

Computing skills
LIV.DAT advanced researcher skills school 2021/03/24

Dr. Egidijus Kukstas

Overview

● Introduction: issues and goals
● Discussion of survey results
● Interacting with the Machine
● Data storage and management
● Software development and programming
● Break*
● Version control
● Multi-processing and GPU acceleration
● Presentation: making good plots
● Jobs and skills outside of academia

 !!!
This is a group discussion

and not 1-hour lecture.
Feel free to contribute at

any time!

*some work may be involved

The dangers of poor computing practices

● The Climate Research Unit (UEA) emails were hacked and
released to the public in 2009

● “Climategate” ensued: scientists were manipulating the data –
say conspiracy theorists

● No evidence of data manipulation was found
● In reality, poor data management and programming practices

were highlighted
● Some emails contained discussion of bugs in the code
● Although the code was fine and the science checks out, the

reputation was damaged
● First hand admissions from scientists: “Yup, my awful

programming strikes again”
● With programming becoming an ever larger fraction of

researchers’ activities, it is important to apply the same rigour as
you do with publications

● Paper retractions due to mistakes happen all the time
Image source: sciencemag.org
https://www.sciencemag.org/news/2018/10/what-massi
ve-database-retracted-papers-reveals-about-science-p
ublishing-s-death-penalty

https://www.nature.com/news/2010/101013/full/467775a.html

https://www.sciencemag.org/news/2018/10/what-massive-database-retracted-papers-reveals-about-science-publishing-s-death-penalty
https://www.sciencemag.org/news/2018/10/what-massive-database-retracted-papers-reveals-about-science-publishing-s-death-penalty
https://www.sciencemag.org/news/2018/10/what-massive-database-retracted-papers-reveals-about-science-publishing-s-death-penalty
https://www.nature.com/news/2010/101013/full/467775a.html

Modern scientist vs. software developer

● Difference?
– In science, software is viewed as a tool and

not the product. Papers are.

● There is no code review. If the result
matches our expectations then it’s
working correctly. Is it?

● Scientists are often self-taught (>90%)
● There is no reward for good code
● Projects grow organically with no clear

requirements at the beginning
● Much of the code is never used again

● Software engineering/development has
figured out many of the problems

● Practices exist that make code
development faster, easier, better

● Can we learn something from them?
● Improve productivity, collaborate easier,

have more confidence in results
● Mistakes in science can be extremely

costly, how can we minimise them?
● Shake off the label of “bad programmer” if

leaving academia

Issues Aims

Goals of this workshop

● Identify the skills you already have but
didn’t appreciate enough

● Identify the areas of computing which
you are lacking in

● Gain awareness of best practice
– The carpentry projects are good places

to start*

● Have a collection of sources to refer to
● Find out what employers are looking

for in industry

*https://datacarpentry.org/
https://software-carpentry.org/

https://datacarpentry.org/
https://software-carpentry.org/

Survey results

https://forms.gle/vTBtwVF9Cigd4JuK9

https://forms.gle/vTBtwVF9Cigd4JuK9

Interacting with the Machine

● Shell or “Terminal” is a program used to
interact with the operating system

● Holds your commands in memory to be
used again

● About 90% of the internet runs Linux servers
● AWS, Google cloud, and Azure all support

Linux environments so the Shell is not going
away anytime soon

● Various flavours: bash, csh, tcsh, ksh, etc.
● Simple use involves: ls, pwd, cd, cp, mv, etc.

Shell scripts

You can type your
commands one-by-one

Or you can save them in a
file and execute them all

https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

Environment variables

● Within Linux, global locations and values
are stored in the form of environment
variables to be looked up by shell
applications

● Most commonly used are: PATH,
LD_LIBRARY_PATH, PYTHONPATH, etc.

● How you control these depends on your
shell

● They can be set once from the terminal or
added to a file to be loaded at startup

● In my case, they should be stored in
“~/.profile” or “~/.bashrc” if it doesn’t exist

https://linuxize.com/post/how-to-set-and-list-environment-variables-in-linux/

https://linuxize.com/post/how-to-set-and-list-environment-variables-in-linux/

Data storage and management: forms of good practice

● Save the raw data without any changes –
preserve it for others to start where you did

● Save a version of the data that you want to use
– change format, improve readability, save time

● Save data-point values for easy and fast plotting
– you will have to remake that plot

● Favour open, non-proprietary format – CSV,
JSON, HDF

● Record the steps taken to transform data and
keep it with the data

● If data storage and manipulation is a significant
part of your project, it may be worth reading up
on data engineering

Wilson et al. 2016 “Good enough practices in scientific computing”

What format is best?

● There is no one “best” format for storing
data

● This depends on your needs and
resources

● Compressing the data can yield great
size results at the cost of speed

● If you never plan to visually inspect the
data, do you need it in human-readable
format?

● Consider the overheads: CSV is quite
efficient at storing small amounts of data*

https://stackoverflow.com/a/37012035
https://www.architecture-performance.fr/ap_blog/loading-data-into-a-
pandas-dataframe-a-performance-study/

https://stackoverflow.com/a/37012035
https://www.architecture-performance.fr/ap_blog/loading-data-into-a-pandas-dataframe-a-performance-study/
https://www.architecture-performance.fr/ap_blog/loading-data-into-a-pandas-dataframe-a-performance-study/

Best practices in programming

● Clear, short chunks of facts
– A program should not require its

readers to hold more than a handful
of facts in memory at once

● Make names consistent,
distinctive, and meaningful

● Make code style and formatting
consistent
– Will depend on your code language

but most have a style guide

Wilson et al. 2014 “Best practices in scientific computing”

Write programs for people, not computers

https://julien.danjou.info/python-bad-practice-concrete-case/

https://julien.danjou.info/python-bad-practice-concrete-case/

Let the computer do the work

● Make the computer repeat tasks: loops,
functions

● Keep functions to doing one task at a time –
easier to test

● Use existing modules/code rather than writing
things from scratch

● Save recent commands in a file for reuse
(write a script)

● If your work depends on repeated use of the
same workflow: build it automatically

● Personal advice: DO NOT comment lines out
as a way of controlling behaviour

This code would benefit so much from
functions and loops

Forgetting to rename on of these
instances is only a matter of time

Make incremental changes

● Work in small steps with
frequent feedback and course
correction
– Really helps if you structure your

code well (small functions)

● Use a version control system
– You rarely know if the changes

you make will be positive
– More on version control later

● One example of incremental
development may be:
– Pseudocode draft
– Define variables you know you are going

to need, in the format you think you
need them

– Empty functions for functionality
– Finalise function logic, returning

intermediate values to test functionality
– Test final function with various inputs
– Add comments and optimise if possible

https://dfrieds.com/python/incremental-development.html

https://dfrieds.com/python/incremental-development.html

Don’t repeat yourself or others

● Data input, constants, variable values must have
a single, authoritative source

● Store parameter values in a separate file if you
have many

● Modularise, rather than copy/paste
– OOP may come into play here

● Re-use and don’t re-write
– On a wider scale: modules
– On a small scale: worth the time searching for that bit

of code you wrote in the past

● Plan for mistakes
– functions/classes are much easier to unit-test
– Implement assertions (check on inputs, format, etc.)

Optimise software only after it works correctly

● Clean up comments, general tidy up
● Use a profiler to find bottlenecks
● Consider parallelising if it takes a while to

run
● Write in the highest level language possible,

then translate to something more efficient if
needed
– e.g. start in python and translate to

C/FORTRAN
– The overall structure is unlikely to change
– Evidence shows that you work faster in high

level language or one you are familiar with

Oram, A. 2010 “Two comparisons of programming languages”

Document design and purpose, not mechanics
No comments at all

Good and unnecessary comments

Descriptive names instead of comments

● Some comments is usually better than no
comments at all

● Proper, meaningful comments is what really
makes a difference

● Document the purpose of the code rather
than what it does – this should be conveyed
by the code itself

● Refactor code if it helps explain how it works
● Embed documentation within the code itself
● If excessive documentation is required,

consider a format specifically designed for it,
e.g. Jupyter notebooks

https://blog.codinghorror.com/coding-without-comments/

https://blog.codinghorror.com/coding-without-comments/

A working break

Task: find a job you would consider
outside of academia, list:

● job title,

● website you found it on,

● one key technical skill it requires

● https://docs.google.com/document/
d/1mRyHjTynmQFqVC2W-IxIUXY
ZVKOI8-FgRlilXGyhqbg/edit?usp=
sharing

https://docs.google.com/document/d/1mRyHjTynmQFqVC2W-IxIUXYZVKOI8-FgRlilXGyhqbg/edit?usp=sharing
https://docs.google.com/document/d/1mRyHjTynmQFqVC2W-IxIUXYZVKOI8-FgRlilXGyhqbg/edit?usp=sharing
https://docs.google.com/document/d/1mRyHjTynmQFqVC2W-IxIUXYZVKOI8-FgRlilXGyhqbg/edit?usp=sharing
https://docs.google.com/document/d/1mRyHjTynmQFqVC2W-IxIUXYZVKOI8-FgRlilXGyhqbg/edit?usp=sharing

Version control: Git

● Git stores metadata on your code and tracks changes
● Dated “images” of your code are available to access

should something go wrong
● Github, Gitlab, Gitbucket, etc. are online repositories

where your code can be stored and shared with others
– This allows for collaborative development where other

people can propose changes/additions to your code
– You then get to decide whether to “merge” the changes or

not

● Git is very powerful and not always intuitive
● Practical advice: at the very least, commit your code

regularly as a form of backup for yourself, whatever
the state

https://rogerdudler.github.io/git-guide/

https://rogerdudler.github.io/git-guide/

Parallel computing

● Most CPUs these days have multiple cores
● Scientific computing clusters have 100s or even 1000s

of cores
● Most processes are designed to only use a single core

– Explicit instructions have to be passed in or with your code
to use multiple cores

● It is quite easy to implement and can speed up your
code multiple times over

● Specific tasks, such as machine learning can take
advantage of the GPU, as well
– You will need to install specific drivers and set your code up

to use it, which can be more involved
– The rewards can be big if your problem is well suited

(matrix operations, etc.)

https://youtu.be/fKl2JW_qrso
http://bit.ly/multiprocess-code

https://youtu.be/fKl2JW_qrso
http://bit.ly/multiprocess-code

Presentations

● Use whatever tool you like, but make sure it works the same way on any
system
– re. PowerPoint and LibreOffice Impress
– PDF is a good format

● Plots are the ultimate product – make sure they are of highest quality
– Frequently presented at talks / on posters by other people if they’re good

● Make sure that:
– The message is as clear as possible without a lengthy caption (out of context

colleague test)
– Labels are clear and large enough
– Consider colour blindness: choose your colours carefully and favour line-types

over different colours
– Favour vector images over raster
– Plot contours instead of many scatter points, rasterize if absolutely necessary

● Avoid plots from simulation packages – you have little control and
they’re usually poor. Save the data instead and plot it yourself

● Python, R, Matlab all have good plotting modules where you have full
control

Example parameter changes for Python’s matplotlib

https://towardsdatascience.com/matplotlib-styles-for-scientific-plot
ting-d023f74515b4

https://towardsdatascience.com/matplotlib-styles-for-scientific-plotting-d023f74515b4
https://towardsdatascience.com/matplotlib-styles-for-scientific-plotting-d023f74515b4

Concluding remarks

● Appreciate the importance of
programming in your professional lives
– Reproducibility, accountability depend on

it

● Continue to improve: look at your code
from start of the PhD

● Don’t expect to implement all of the
advice now

● Be aware of what good practices are
● It will help you in the long run

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

