

Established by the European Commission

Virtual universes vs. the real thing

Andreea Font, Juliana Kwan, Ian McCarthy, Jaime Salcido (on behalf of the Computational Galaxy Formation group)

> Astrophysics Research Institute, Liverpool JMU

Outline

- Cosmological simulations ("virtual universes") Ian
- The EAGLE database & visualisation Jaime
- The Milky Way & Gaia Andreea
- Parameter inference & MCMC Juliana

Virtual universes

lan McCarthy (with thanks to Rob Crain)

14 billion years ago, the Universe looked like this.

How did this...

The formation & evolution of the galaxy population:

- How do dark matter, gas, stars and black holes assemble into galaxies?
- How do galaxies populate the cosmic large scale structure?
- How are galaxies influenced by physical processes & their environments?

Interfacing astrophysics with cosmology

- Can we constrain the identify of dark matter via structural tests?
- Can we establish the influence of exotic ingredients on cosmic structures?
- What are the consequences of galaxy formation for observational tests?

Key question: why this distribution of galaxies?

Key question: why this diversity of galaxies?

Created by Zsolt Frei and James E. Gunn Copyright © 1999 Princeton University Press

Key question: what drives these apparent environmental effects?

Unlike most scientists, astrophysicists cannot learn by performing experiments...we need 'digital laboratories'.

ĸ

First attempt with analogue computers: Holmberg (1941)

Simulate 2 galaxies each with 37 "stars", so 74 stars.

Each interacts with 73 others; total # of interactions per step = 73*74 = 5402

No fun with pencil and paper: use lightbulbs and light meters.

Theultimate calculation?

Length scales 10¹³ m 15 orders of Event horizon of galactic black hole: ~ 100 Earth orbits: magnitude 10²⁸ m • Size of observable Universe: ~ 10¹⁰ light years: **Mass scales** 10³⁴ kg Mass of star clusters: ~ 10⁴ solar masses 17 orders of 10⁵¹ kg • Mass within obs. Universe: ~ 10²¹ solar masses magnitude **Time scales** 10⁵ s Variability of galactic black hole: ~ few days 12 orders of 10¹⁷ s • Age of the Universe: ~14 billion years magnitude

This would require a computer with 10¹² processors and 10⁹ TB of memory. It would need 100 million times the current global electricity consumption. It would run for 10 million years (at least)!

Science and Technology Facilities Council

Ϋ́

Science and Technology Facilities Council

既

Perturbations

How

Universe shows small
 density fluctuations already
 at high z (see CMB)

Convert CMB fluctuations

to density perturbations

perturbed density field

The power spectrum

- Use the power spectrum to describe the density fluctuations
- From inflation: $P_i(k) = Ak^n$
- Temporal evolution (in the linear regime): $P(k, t) = P_0(k)D^2(t)$

Power spectrum tells us "how far" to displace particles from their starting positions. Fluctuations were a Gaussian random field - direction of perturbation is random.

Limitations of this method

- There are a number of parameters that have to be chosen:
 - Box size B
 - Number of particles N
 - Starting redshift z_i
- In practice there are several constraints on these:
 - Minimal modes that are included: $2B/\sqrt[3]{N}$
 - Largest mode has to stay linear: $B \ge 2\pi/k_{nl} \sim 20Mpc$
 - Starting redshift (typically 40 < z_i < 80):
 Too late: shell crossing not taken into account
 Too early: numerical noise is integrated

Size of cosmological simulations over time

- computers double speed every 18 months (Moore's law)
- particle number in simulations doubles every 16-17 months
- only possible with algorithms that scale close to ~N (or N log(N))

The particle-mesh (PM) method

Poisson's equation: potential due to a "charge" e.g. mass

- particle-mesh method
 - · Poisson's equation in real space:
 - Poisson's equation in Fourier space:
 - assign particle mass to grid (e.g. CIC)
 - compute Fourier transform of density contrast (FFT ~ N log N)
 - convert to Fourier transform of potential
 - transform the potential back to real space
 - compute gradient by finite differencing of the potential

average comoving matter density $\bar{\rho}_c$

$$\vec{\nabla}^2 \delta \phi = 4\pi G \bar{\rho}_c \delta a^{-1}$$

$$-k^2 \delta \phi_{\vec{k}} = \frac{4\pi G \bar{\rho}_c \delta_{\vec{k}}}{a}$$

Eulerian vs Lagrangian methods

Eulerian methods moving-mesh

discretize space (finite-volume scheme)

use a grid fixed in space

discretize space (finite-volume scheme)

image credit: V. Springel uses an unstructured mesh moving with the flow

Lagrangian methods

discretize mass

use particles for the gas (like in n-body) which move with the flow

What other ingredients are necessary?

Gas and heavy elements are ejected at 2 million mph!

Heavy elements are synthesised

Gravity pulls in gas Stars are born

٠

Gas and heavy elements are ejected at 2 million mph! Injection of energy from supernovae, interaction of outflows with nearby gas Heavy elements are

synthesised

Gravity pulls in gas

Hydrodynamics and radiative cooling

Stars are born Formation of stars from gas, evolution of the stars, synthesis and release of heavy elements What other ingredients are necessary?

Gravity (all components) Hydrodynamics for compressible fluid

Everything else...is below our resolution limit! Radiative cooling & heating of gas Star formation Stellar evolution & nucleosynthesis Black hole formation and growth Feedback from stars and black holes

Intimately coupled in a non-linear fashion!

EAGLE

Evolution and Assembly of Galaxies and their Environments

Summary

HPC central to building an understanding of how the early Universe evolved into that we observe today.

Confrontation of dark matter simulations with observed galaxy distribution is major evidence for a CDM-dominated Universe.

Realism of simulations including complex "gastrophysics" has broadly corroborated galaxy formation theory in CDM cosmogony.

Challenge used to be "can we reproduce what we see?". But now, sims are the premier tool with which to interpret observations. Simulations give us access to components (and epochs!) that we cannot easily observe.

Still huge amount of "known unknowns" to tackle! Much of the gastrophysics is implemented phenomenologically: we want to understand the physics of the messy stuff in detail!

Questions?

Eagle database & PySPHviewer

Jaime Salcido

The EAGLE public database contains galaxy properties (such as masses, star formation rates, luminosites and metallicities), merger histories and images for more than 1,000,000 simulated galaxies extracted from multiple simulations of various box sizes, numerical resolutions and physical models.

You can access the database in the following link:

http://icc.dur.ac.uk/Eagle/database.php

Useful information about the simulations and available datasets can be found in the data release paper:

https://arxiv.org/abs/1510.01320

EAGLE Database

Welcome <Your User Name> Documentation + 9) Streaming queries return unlimited number of rows in CSV format and are cancelled after 1800 seconds. Browser queries return maximum of 1000 rows in HTML format and are cancelled after 90 seconds. CREDITS/Acknowledgments + SELECT VmaxRadius as r_max, -- The two variables we Vmax as v max -- want to extract **Public Databases** FROM 2) Execute E Eagle RefL0100N1504_SubHalo -- The simulation Tables WHERE query -- The snapshot AGNdT9L0050N0752_Aperture SnapNum = 28AGNdT9L0050N0752_FOF AGNdT9L0050N0752_Magnitudes Query (stream) AGNdT9L0050N0752_Sizes AGNdT9L0050N0752_SubHalo Query (browser) 1) Query area RecalL0025N0752_Aperture RecalL0025N0752_FOF Help Simulations RecalL0025N0752_Magnitudes RecalL0025N0752_Sizes RecalL0025N0752 SubHalo RefL0025N0376_Aperture RefL0025N0376 FOF RefL0025N0376_Magnitudes 3) Maximum number of rows to return to the query form: 10 0 RefL0025N0376_Sizes RefL0025N0376_SubHalo Available RefL0025N0752_Aperture Previous queries: List of all queries executed sofar in this session. Selecting a query will make it appear in the query window. RefL0025N0752_FOF The button will show all of them in a separate window. Refreshing that window will load the latest queries again. RefL0025N0752_Magnitudes RefL0025N0752 Sizes SELECT VmaxRadius as r max, -- The two variables we Vmax as v i C Show All RefL0025N0752_SubHalo RefL0050N0752_Aperture Demo queries: click a button and the query will show in the query window. Holding the mouse over the button will give a short explanation of the goal of the query. These queries are also available on this page. RefL0050N0752_FOF 6 RefL0050N0752_Magnitudes RefL0050N0752_Sizes Subhalo: SUB1 SUB2 RefL0050N0752_SubHalo 5) Demo queries SIZE1 Sizes: RefL0100N1504_Aperture RefL0100N1504_FOF Magnitudes: MAG1 RefL0100N1504_Magnitudes RefL0100N1504_Sizes RefL0100N1504_SubHalo Metadata queries: The SQL statements under these buttons provide examples for querying and managing the state of a private database. Snapshots

Holding the mouse over the button will give a short explanation of the goal of the statement.

NIVERSITY OF

Available datasets:

- Datasets:
 - Subhalo Main galaxy properties
 - FOF Halo properties
 - Sizes Galaxy sizes
 - **Aperture** Galaxy properties in 3D apertures
 - Magnitudes Galaxy photometry in the GAMA bands
 - Particle data

Example - 1

Visualisation - What is a smooth density field?

The problem:

Solution 1: Build a grid

Example taken from: https://community.dur.ac.uk/joshua.borrow/blog/posts/density_from_particles/

Visualisation - What is a smooth density field?

Solution 2: Use a smoothed density estimate

The density at each point calculated using a kernel keeping the number of (weighted-)particles in each cell constant.

This kernel ensures that particles that are further away matter less to the density estimate.

LIVERSITY

Py-SPHViewer

Under the SPH (Smoothed-particle hydrodynamics) approximation, the projected density field at any pixel is the contribution of all particles within the "projected" kernel.

$$\rho(x) = \sum_{j} m_{j} W(|x - x_{j}|, h_{j})$$

$$\Sigma(x, y) = \int \rho(x, y, z') dz' = \sum_{j} m_{j} \int W(|x - x_{j}|, h_{j}) dz'$$

$$\Sigma(x, y) = \sum_{j} m_{j} \tilde{W}(R_{j}, h_{j})$$

You can download Py-SPHViewer here:

https://github.com/alejandrobll/py-sphviewer

Example - 2

Some additional examples using SPH visualisation:

- <u>https://www.youtube.com/watch?v=S7WCR39brw0</u>
- https://www.youtube.com/watch?v=2Fp_VK-xuKE

Questions?

Milky Way and Gaia

Andreea Font

How did the Milky Way form?

STARS

ARTEMIS simulations

LIVERSITY OF

LIVERSITY OF

- Gaia can infer distances by measuring parallax
- Gaia DR2 contains parallaxes for 1.3 billion stars with errors as small as 50 micro-arcseconds, equivalent to seeing a human hair from a distance of 500 km.
- Gaia is also taking precise measurements of the brightness (down to mag G=20), colours and proper motions of ~ 1 billion stars.

360° view of Gaia's sky

https://www.youtube.com/watch?v=8cXURHmtf3I

360° Parallax and proper motion on the sky

https://www.youtube.com/watch?v=KyQdK56Qee0

Facilities Council

-)→ C û	🔽 🔒 https://ge	a.esac. esa.int /archive/				🖂 🚖	Q Search
EUROPEAN SPACE AGENCY	ABOUT ESAC 🗗						
gaia archi	ve						
ME SEARCH STATI	STICS VISUALISATION	HELP					
Advanced (ADQL)	Query Results						
		Position File					
		Name C Equatorial	Target in Circle	О Вох			
			Name m54	m54 resolved.	for All	Radius 2	2 deg 💌
		Search in:	gaiadr2.gaia_source		•		
		Extra conditions					
		► Display columns					
		Max. number of	results: 500 🖂	neset Form	\$	Show Query	🔍 Submit Query
ame:							Query exam
SELECT TOP 500 gaia_source.source_ rce.phot_g_mean_mag gaia_source.a_g_val FROM gaiadr2.gaia_s WHERE CONTAINS (POINT ('ICRS',ga	id,gaia_source.ra,gaia ,gaia_source.bp_rp,gai ource iadr2.gaia_source.ra,g	_source.ra_error,gai .a_source.radial_velo gaiadr2.gaia_source.c	la_source.dec,gaia ocity,gaia_source. dec),	_source.dec_erro: radial_velocity_e	r,ga <mark>ia_source.</mark> error,gaia_sou	parallax,gaia_source trce.phot_variable_fl	e.parallax_error,gaia_ .ag,gaia_source.teff_v
pace for query autocompletic	n				d R	eset Form	🔍 Submit Query
	/FRPOC	<u>)</u> /		MOORES	2		Technology

Astronomical Data Query Language (ADQL)

- an **SQL** `dialect` developed for astronomy by the Virtual Observatory.

Example 1:

Retrieve the source identifier ('source_id'), right ascension ('RA'), declination ('DEC'), and parallax ('parallax') for all sources in *Gaia DR2* that have parallaxes in the range 15–50 mas as well as G-band magnitudes ('photo_g_mean_mag') in the range 9–9.5 mag.

Syntax:

SELECT source_id, ra, dec, parallax FROM gaiadr2.gaia_source WHERE parallax between 15 AND 50 AND phot_g_mean_mag >= 9 AND phot_g_mean_mag <= 9.5

IVERSITY OF

More on **SQL**: <u>https://www.sqlcourse.com/</u>

ADQL Cookbook:

https://www.gaia.ac.uk/data/gaia-data-release-1/adql-cookbook

More technical document on ADQL: https://www.ivoa.net/documents/REC/ADQL/ADQL-20081030.pdf

Gaia archive tutorials:

https://gea.esac.esa.int/archive-help/

Gaia DR2 Model (what parameters? units): https://gea.esac.esa.int/archive/documentation/GDR2/Gaia_archive/ chap_datamodel/

The result of the query can be downloaded in various formats: - VOTable; CSV; FITS; JSON

c Advanced (ADQL) Query Results

16024424645490 🗙

source_id	ra	ra_error	dec	dec_error	parallax	parallax_error	phot_g_mean_mag	bp_rp	radial_velocity	ri -
	deg	mas	deg	mas	mas	mas	mag	mag	km.s**-1	k
567304539159590528	1.943847263933078	2.2183004778840067	83.12859840421683	2.756514142970163	3.00000020417362	3.475613783408368	20.939615	0.5976505		
3414837379320591872	80.02290762770141	1.9465328828698256	22.88710089519733	1.4243181489062613	3.00000005960666667	2.2737769575597175	20.760464	1.3391247		
5822151567899459968	239.0472862601741	0.955014342022537	-66.98889682574703	0.8227704830378849	3.00000065216071	1.5035975446501049	20.914507	1.7310066		
4167250675314428416	259.5514160201236	1.1641967677427485	-9.91 <mark>279018871</mark> 9985	0.9086419255686005	3.0000001313622646	1.2489709348257345	20.667692	1.3010616		
141500278843232768	42.95468605883477	1.4715598278428972	37.20253861954247	1.1856796327153942	3.000000152252159	1.7110310689387886	20.696165	2.5031128		
2039147637754335488	288.9754089690946	0.12496466266918414	29.475322703391143	0.14187644941915395	3.0000001579249047	0.1655308649585397	16.90919	1.9975939		
16192440740770076 <mark>1</mark> 6	226.35541022706713	0.9312738033931112	62.00466670054089	0.9908709390600131	3.0000002483662227	0.781459394239726	20.544878	1.5413342		
6254938822251371648	233.46202255275068	0.664707727662377	- <mark>19.3437828529394</mark> 1	0.5168971496988178	3.00000260012579	0.6809436523811101	19.646704	2.7502308		
5836729850822906240	185.1059865652506	0.24444911409000072	-77.35478669798637	0.22117033795155253	3.0000002769076595	0.27423828129253003	19.256058	3.143 <mark>4</mark> 574		
6038615548788017024	242.60299072044393	1.1012034920836296	-29.559970816 <mark>1</mark> 74804	0.4631838379259978	3.0000003262728345	1.2284870904687217	20.519066	1.5972118		
4623106199028573568	88.19212843767284	0.653731725808769	-80.12776382114767	0.7922502370482454	3.0000003647225246	0.7197339206976358	20.423838	2.1796303		
4268279610528053760	288.293430501706	0.8948793024185012	3.3943705024953252	0.8872743050785302	3.000000373509193	0.6252419963135777	19.723185	1.6490498		
5990805897006793216	244.25372844199248	0.8809506644628131	-44.334837497 <mark>1</mark> 7577	0.5302076879306866	3.0000004429439953	0.9009132517389731	19.997984	2.8739681		
4127732784311532544	256.9437022904397	1.4167252289152663	-20.83203845590637	1.1499734099674228	3.0000005275129786	1.7797986741500376	20.628622	1.3486176		
59336537 <mark>2</mark> 9259316864	247.6997330473052	0.08721423579163519	-53.1934 <mark>124921</mark> 48944	0.06554892875593755	3.0000006028003705	0.09870426143643522	17.190062	2.2877522		
3301620289051645952	59.26762490803188	0.036848956380880225	9.025956428245957	0.02064047241124432	3.0000006149079264	0.04247739914147331	11.725768	0.87062454		
6097862762908102656	213.41959512739965	1.042407430994955	-42.14846414905339	0.9146906229945896	3.000000630580003	1.3755530115362051	20.021347	1.8532658		-
4										

📧 🖪 1-20 of 2,000 🕟 🕅

Gaia DR2 Data Model Show query in ADQL form CSV

Download results

Download your data

IIVFRPOOL

→ GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM

Hertzsprung - Russell diagram with Gaia

https://www.youtube.com/watch? v=jutw-IOwriw

Example 2:

Select for top 10000 stars the G-band magnitudes and BP-RP colours.

where BP and RP are 'blue' and 'red' pass bands specific to Gaia.

ADQL query:

1 SELECT TOP 10000 source_id, phot_g_mean_mag, (phot_bp_mean_mag-phot_rp_mean_mag) as colour 2 FROM gaiadr2.gaia_source

3 WHERE (phot_bp_mean_mag-phot_rp_mean_mag) > 0

With the result saved in a file, one can plot a colour - magnitude diagram.

Here is an example of Python code for data in csv format :

Example 3:

Select top 10000 stars in the 'Solar neighborhood', i.e. a spherical region of radius of 300 parsec (1 pc = 3.26 lyr),

or, equivalently, with parallax > 3

ADQL query

(note: here I've limited the search only to 10000 objects. The real region contains millions of stars; to get them all, omit 'TOP'; the query will take longer)

SELECT TOP 10000
gaia_source.source_id,gaia_source.ra,gaia_source.ra_error,gaia_source.dec,gaia_source.dec_error,gaia_source.parallax,gaia_source.parallax_error,gaia_source.phot_g_mean_
mag,gaia_source.bp_rp,gaia_source.radial_velocity,gaia_source.radial_velocity_error,gaia_source.phot_variable_flag,gaia_source.teff_val,gaia_source.a_g_val
FROM gaiadr2.gaia_source
WHERE(parallax > 3)

.. and the colour magnitude diagram from this query:

Major discovery: "Gaia Enceladus"

 an ancient merger of the Milky Way with another galaxy the size of the LMC

LIVERSITY OF

Gaia has made a more precise measurement of the total mass of the Milky Way ~1.5 trillion Solar masses (including dark matter)

from the motions of the globular clusters.

(mass is related to rotational speed of objects: the faster they rotate, the more underlying mass)

Orbits of ~14,000 known asteroids with Gaia

Grey shows asteroids discovered by Gaia.

Asteroids shown in bright red and orange hues are **main-belt asteroids**, located between the orbits of Mars and Jupiter.

Trojan asteroids, found around the orbit of Jupiter, are shown in dark red. In yellow are the orbits of several tens of near-Earth asteroids (<1.3 AU).

LIVERSITY OF

Next Gaia release (Gaia DR3) : 3 Dec 2020

(mission will continue until 2022 and maybe beyond)

It is estimated that in the next few years Gaia will discover:

- ✓ hundreds of thousands of asteroids and comets within our Solar System
- ✓ seven thousand planets beyond our Solar System (exoplanets)
- ✓ tens of thousands of 'failed' stars, called brown dwarfs
- ✓ twenty thousand exploding stars, called supernovae
- ✓ hundreds of thousands of distant active galaxies, called quasars.

Gaia will also give us:

- ✓ a refined measurement of the cosmic distance scale
- ✓ new tests of general relativity

Questions?

Parameter Inference & MCMC

Juliana Kwan

Suppose you needed to fit a straight line to some data...

My model is: y = mx + b

$$\chi^2 = \sum_i \frac{[y_i - \tilde{y}(x_i|m, b)]^2}{\sigma_i^2}$$

Work out the best fitting values of m, b by minimising χ^2 .

Need to solve $\partial \chi^2 / \partial \alpha_i = 0$, $\alpha_i = (m, b)$

The Bayesian approach:

$$P(H|D) = \frac{P(H)P(D|H)}{P(D)}$$

Bayes' Theorem

P(H|D) is the probability of the hypothesis given the data (**posterior**; this is what we want)

P(D|H) is the probability of the data given the hypothesis (**likelihood**)

P(H) is the **prior** hypothesis

P(D) is the probability distribution of the data (important for model comparison)

Bayesian parameter estimation involves calculating the likelihood, P(D|H):

$$\mathcal{L} \propto \exp\left[-\frac{1}{2}\sum_{i}(y_i - \tilde{y}(x_i))C_{ij}^{-1}(y_j - \tilde{y}(x_j))\right]$$

You'll notice that:

$$\log \mathcal{L} \propto -rac{1}{2}\chi^2$$

This is true for Gaussian distributions only!

We must also choose a prior on the parameters, m, b, e.g:

$$\pi(m) = (m_{\max} - m_{\min})^{-1}$$
 $\pi(b) = \frac{1}{\sigma\sqrt{2\pi}} \exp[-\frac{1}{2}(\frac{b-\mu}{\sigma})^2]$ $\pi(b) = 1/b$

This represents any external knowledge that we already have about the system, e.g. a weighted coin.

Now that we have the likelihood and prior, how should we calculate the posterior?

Markov Chain Monte Carlo Analyses

In real world applications, we often have many parameters, which makes evaluating the posterior expensive.

Fortunately there are numerical methods to deal with this.

The Metropolis-Hastings algorithm:

- 1. Choose a starting point, x_0 , calculate $L(x_0)$ (close to what you think the parameters should be)
- 2. Take a step to x_1 by calculating $L(x_1)$
- 3. If $L(x_1) \ge L(x_0)$, then keep x_1 by adding it to the chain
- 4. If $L(x_1) < L(x_0)$, generate a random number, r~U(0,1)
 - a. If $r \ge L(x_1)/L(x_0)$, keep x_1 by adding it to the chain
 - b. If $r < L(x_1)/L(x_0)$, discard x_1 (add x_0 to the chain)
- 5. Repeat steps 2 4 until convergence is reached.

Markov Chain Monte Carlo Analysis

At the end of the process, you will have a chain (list of parameter values) that represents the combination of the likelihood and the prior. The density of points in the chain is the posterior.

Some caveats:

- You must check for convergence. MCMC gives the correct posterior in the limit of infinite samples.
- Be careful in your choice of step size too small and the chain will get stuck around the peaks of the posterior, too large and the chain can 'step over' the peaks.
- Multimodal posteriors require special treatment; see nested sampling

Helpful packages for parameter inference:

- CosmoMC and GetDist
 - https://cosmologist.info/cosmomc/
- CosmoSIS
 - <u>https://bitbucket.org/joezuntz/cosmosis/wiki/Home</u>
- emcee
 - <u>https://emcee.readthedocs.io/en/stable/</u>
- dynesty
 - <u>https://github.com/joshspeagle/dynesty</u>
- anesthetic
 - <u>https://anesthetic.readthedocs.io/en/latest/</u>

Example: Planck 2018 likelihood

Map of temperature fluctuations in the early universe

Spectrum of fluctuations as a function of angular size

Question: What model parameters best fit the observed fluctuations?

Example: Planck 2018 likelihood

Download the chains:

https://wiki.cosmos.esa.int/planckpla/index.php/Cosmological_Parameters

LIVERSITY OF

If you want to run them for yourself (long!):

Download likelihood code: <u>https://pla.esac.esa.int/pla/#cosmology</u>

Install into CosmoMC: https://cosmologist.info/cosmomc/readme_planck.html

·) → C [*] C C C C A C A A A A A A A A A A A A A	··· © ☆	\ 🗓 ⑧ # 🗗 🖉 S 💿 ≡	
lanck Legacy Archive		Cesa	
Å Available Data Sets: PR1-2013 PR2-2015 PR3-2018 Legacy (Selection of PR1-2013, PR2-2015 and PR3-2018) PR3-2018 Browse cosmology products of the Planck Legacy Archive. Ω CosmoLogy ProDucts			$\begin{array}{c} \mathbf{g} \\ \mathbf{z}_{5} \\ \mathbf{z}_{6} \\ \mathbf{z}_{4} \\ \mathbf{z}_{6} \\ \mathbf{z}_{4} \end{array} = \begin{bmatrix} \mathbf{z}_{6} \\ \mathbf{z}$
Only legacy products Release PR3 - 2018		Explanatory Supplement	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cosmological parameters CMB angular power spectra	Lensing products Noise covariance matrices		CosmoMC and Plotting with Planck Likelihood and Chains The Planck likelihood code (PLC/cikk) and parameter chains are available from the <u>Planck Legacy Archive</u> . The Planck likelihood are included with the cosmoence installation and do not need to be installed separately. Using the Planck likelihood with CosmoMC
= RFSULTS			Note you need to use Intel fortran (ifort) 14 or higher to build CosmoMC, or gfortran (gec) 6 latest (easily available for testing in <u>virtual environments</u>) so make sure you have that configured before you start.
	22 PR3 PR4	0 selected items	Download mm install the Planck likelihood code and baseline data files to somewhere convenient from * ExactLeage, Attach (ore and baseling)
	File name	Size	s and the state of
Planck 2018 TT. TE. FE. TTTEFE. TTTE. TEFE and TTEE alternative high-ell campaes	COM Likelihood Data-extra-camspec-ext 83.00.tar.gz	7.6 GB	• od plo-3.0 • ./wf configureinstall_sli_deps
Planck 2018 TE, EE binned high-ell Plik likelihood as well as TE, EE, TTTEEE, unbinned likelihood and TTTEE binned likelihood.	E spectrum-model PE correction COM_Likelihood_Data-extra-plik-ext_R3.00.tar.gz	5.1 GB	(you may need to change the options on this line depending on your installation;install_all_deps may not be noded; see the pite_20 readme and for details)/net install
Planck 2018 LFI-based low-ell likelihood for TEB.	COM_Likelihood_Data-extra-bflike-ext_R3.00.tar.gz	180.7 MB	source ./his/citk.profile.dk
Planck 2018 data sets needed to compute the baseline Planck 2018 likelihoods in T and T+P at low-ell and t only for lensing.	nigh-ell for the CMB, and T+P COM_Likelihood_Data-baseline_R3.00.tar.gz	57.5 MB	Here I assume you have installed CosmoMC in a directory called COSMOMC_PATH. If you haven' done it already, also add CosmoMC's python path (for plotting and analysis of chains) to your ~/ hashre: suport PTHORPATH-COSMOCPATH/python.iPTHORPATH
🗆 🔏 🕁 Planck 2018 TE and EE high-ell foreground- and nuisance-marginalized Plik_lite likelihoods.	COM_Likelihood_Data-extra-plik-lite-ext_R3.00.tar.gz	3.1 MB	Make sure you have also downloaded and extracted the Planck likelihood data files that you want (COM_Likelihood_Data-baseline) There change to your COMMORE.PMT Here of extremely and the planck likelihood data and you data file installation
Planck 2018 likelihood code. It provides C and Fortran libraries and python wrappers that allow users to cor ell and low-ell temperature, polarization, and CMB lensing	npute the log likelihoods of high- COM_Likelihood_Code-v3.0_R3.01.tar.gz	2.3 MB	ed CORNERSFARM
🗆 🔏 🕁 Planck 2018 extended ell range lensing likelihood.	COM_Likelihood_Data-extra-lensing-ext_R3.00.tar.gz	796.1 KB	
IN N 1 of 1 ▶ ▶ Page size: 100 .		Displaying 1-7 of 7	

pip install anesthetic (use flag --user if no root access)

LIVERSITY OF

Why does this work?

The file directory contains

• .paramnames file

This lists the names of the parameters and their latex labels

• .ranges file

This lists the min, max values of each parameter. Can be 'none'

If using CosmoMC, these files are automatically generated.

Science and Technology Facilities Council

Some useful commands...

- mcmc.mean()
- mcmc.median()
- mcmc.std()
- mcmc.describe(): prints mean, std dev, confidence levels for each parameter, max/min values
- mcmc.info(): prints names of each column, data type, no. of entries.

Science and Technology Facilities Council Bayesian statistics is a very powerful tool for analysing large datasets.

Two functions:

- Parameter inference: given a certain model, what are the best fitting parameters to the observed data?
- Model selection: which model is better able to fit the data?

There are many publically available packages to help you!

Questions? Email: j.kwan@ljmu.ac.uk or message via Slack

Science and Technology Facilities Council

Questions?