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Virtual universes

Ian McCarthy
(with thanks to Rob Crain)



How did this…

14 billion years ago, the Universe looked like this.



GN-z11

…evolve into this?

M82

M87

The formation & evolution of the galaxy population:
• How do dark matter, gas, stars and black holes assemble into galaxies?
• How do galaxies populate the cosmic large scale structure?
• How are galaxies influenced by physical processes & their environments?



Interfacing astrophysics with cosmology
• Can we constrain the identify of dark matter via structural tests?
• Can we establish the influence of exotic ingredients on cosmic structures?
• What are the consequences of galaxy formation for observational tests?



Key question: why this distribution of galaxies?



Key question: why this diversity of galaxies?



Key question: what drives these 
apparent  environmental effects?



Unlike most scientists,  
astrophysicists cannot  
learn by performing  
experiments…we need
‘digital laboratories’.



First attempt with analogue computers: Holmberg (1941)

Simulate 2 galaxies each with 
37  “stars”, so 74 stars.

Each interacts with 73 others; total #  
of interactions per step = 73*74 = 5402

No fun with pencil and paper: 
use  lightbulbs and light meters.



Feed initial conditions into a computer
(The Universe shortly after Big Bang is remarkably well 

understood)

Program the computer with descriptions of 
the key astrophysical processes

(These are understood in vastly differing degrees)

Evolve the initial conditions for 14 billion  
years, from the Big Bang to the present day

(Requires lots of calculations, i.e. a big computer)

Compare with observational data  
(or make predictions)

(Occasionally we show the observers got it wrong!)



Theultimate calculation?
• Length scales

• Event horizon of galactic black hole: ~ 100 Earth orbits:
• Size of observable Universe: ~ 1010 light years:

• Mass scales

• Mass of star clusters: ~ 104 solar masses
• Mass within obs. Universe: ~ 1021 solar masses

• Time scales

• Variability of galactic black hole: ~ few days
• Age of the Universe: ~14 billion years

1013 m
1028 m

1034 kg
1051 kg

105 s
1017 s

15 orders of  
magnitude

17 orders of  
magnitude

12 orders of  
magnitude

This would require a computer with 1012 processors and 109 TB of memory.

It would need 100 million times the current global electricity consumption.  It would run for 
10 million years (at least)!





Perturbations

• Universe shows small 

density  fluctuations already 
at high z  (see CMB)

• Convert CMB fluctuations 

to  density perturbations

How
?

perturbed density field

11 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 
13.01.2016



The power spectrum

P(k)

• Use the power spectrum to describe the density fluctuations
• From inflation: Pi(k) = Akn

• Temporal evolution (in the linear regime): P(k, t) = P0(k)D2(t)

• How to impose a spectrum of fluctuations on a particle distribution?

12 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 13.01.2016

Power spectrum tells us “how far” to displace particles from their starting positions.  
Fluctuations were a Gaussian random field - direction of perturbation is random.



16 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 
13.01.2016



Size of cosmological simulations over time

1 month with direct  
summation

10 million years with  
direct summation

9 billion years with  
direct summation MXXL

• computers double  
speed every 18 
months  (Moore’s law)

• particle number in  
simulations 
doubles  every 
16-17 months

• only possible with  
algorithms that scale  
close to ~N (or N  log(N))

image credit: V. Springel

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 2 20/01/2016









image credit: V. 
Springel

Eulerian vs Lagrangian methods

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

discretize space  
(finite-volume scheme)

Eulerian methods moving-mesh Lagrangian 
methods

discretize mass

use a grid fixed in space
use particles for the gas 
(like  in n-body) which 
move with  the flow

discretize space  
(finite-volume scheme)

uses an unstructured  
mesh moving with the flow



What other ingredients are necessary?



Gravity pulls  
in gas

Stars are 
born

Heavy 
elements  are 
synthesised

Gas and heavy  
elements are  
ejected at 2  
million mph!



Gravity pulls  
in gas

Stars are 
born

Heavy 
elements  are 
synthesised

Gas and heavy  
elements are  
ejected at 2  
million mph!

Hydrodynamics and  
radiative cooling

Formation of stars  
from gas, evolution  
of the stars,  
synthesis and  
release of heavy  
elements

Injection of energy from  
supernovae, interaction of  
outflows with nearby gas



What other ingredients are necessary?

Gravity (all components)
Hydrodynamics for compressible fluid  

Everything else…is below our resolution limit!

Radiative cooling & heating of gas

Star formation

Stellar evolution & nucleosynthesis  Black 

hole formation and growth  Feedback from 

stars and black holes

Intimately  
coupled in a 
non-linear 
fashion!



EAGLE
Evolution and Assembly of GaLaxies and their Environments



https://docs.google.com/file/d/1YJecqulV2kA5Cm0FpMU0w17P9KhUhKkI/preview




Summary

HPC central to building an understanding of how the early  
Universe evolved into that we observe today.

Confrontation of dark matter simulations with observed galaxy  
distribution is major evidence for a CDM-dominated Universe.

Realism of simulations including complex “gastrophysics” has  
broadly corroborated galaxy formation theory in CDM cosmogony.

Challenge used to be “can we reproduce what we see?”. But now,  
sims are the premier tool with which to interpret observations.
Simulations give us access to components (and epochs!) that we  
cannot easily observe.

Still huge amount of “known unknowns” to tackle! Much of the  
gastrophysics is implemented phenomenologically: we want to  
understand the physics of the messy stuff in detail!



Questions?



Eagle database & 
PySPHviewer

Jaime Salcido



The EAGLE public database contains galaxy properties (such as masses, star formation 
rates, luminosites and metallicities), merger histories and images for more than 1,000,000 
simulated galaxies extracted from multiple simulations of various box sizes, numerical 
resolutions and physical models.

You can access the database in the following link:

http://icc.dur.ac.uk/Eagle/database.php

Useful information about the simulations and available datasets can be found in the data 
release paper:

https://arxiv.org/abs/1510.01320

http://icc.dur.ac.uk/Eagle/database.php
https://arxiv.org/abs/1510.01320




Available datasets:

● Simulations:
○ Ref L0025N376

● Datasets:
○ Subhalo - Main galaxy properties
○ FOF - Halo properties
○ Sizes - Galaxy sizes
○ Aperture - Galaxy properties in 3D apertures
○ Magnitudes - Galaxy photometry in the GAMA bands
○ Particle data

Simulation 
Model

Box length in comoving 
megaparsecs

Cube root of the initial 
number of particles per 

species



Example - 1



Visualisation  - What is a smooth density field?

The problem: Solution 1: Build a grid

Example taken from: https://community.dur.ac.uk/joshua.borrow/blog/posts/density_from_particles/

https://community.dur.ac.uk/joshua.borrow/blog/posts/density_from_particles/


Visualisation  - What is a smooth density field?
Solution 2: Use a smoothed density 
estimate

The density at each point calculated using a kernel 
keeping the number of (weighted-)particles in each 
cell constant.
This kernel ensures that particles that are further 
away matter less to the density estimate. 

S
ource: W

ikipedia



Py-SPHViewer

Under the SPH (Smoothed-particle hydrodynamics) approximation, the 
projected density field at any pixel is the contribution of all particles within 
the “projected” kernel.



You can download Py-SPHViewer here:

https://github.com/alejandrobll/py-sphviewer

Example - 2

Some additional examples using SPH visualisation:

● https://www.youtube.com/watch?v=S7WCR39brw0
● https://www.youtube.com/watch?v=2Fp_VK-xuKE

https://github.com/alejandrobll/py-sphviewer
https://www.youtube.com/watch?v=S7WCR39brw0
https://www.youtube.com/watch?v=2Fp_VK-xuKE


Questions?



Milky Way and Gaia  
Andreea Font



How did the Milky Way form?

STARS GAS

ARTEMIS 
simulations

https://docs.google.com/file/d/1WdNIrCaUBSqjzNAQaweuWw6ZUzCqGZUj/preview






360° view of Gaia's sky

https://www.youtube.com/watch?v=8cXURHmtf3I

360º Parallax and proper motion on the sky
https://www.youtube.com/watch?v=KyQdK56Qee0

https://www.youtube.com/watch?v=8cXURHmtf3I
https://www.youtube.com/watch?v=KyQdK56Qee0


Gaia Archive:
https://gea.esac.esa.int/archive/ 

Login
(optional)

https://gea.esac.esa.int/archive/




Astronomical Data Query Language (ADQL)

- an SQL `dialect` developed for astronomy by the Virtual Observatory.

Example 1: 

Retrieve the source identifier (‘source_id’), right ascension (‘RA’), declination 
(‘DEC’), and parallax (‘parallax’) for all sources in Gaia DR2 that have 
parallaxes in the range 15–50 mas as well as G-band magnitudes 
(‘photo_g_mean_mag’) in the range 9–9.5 mag.

Syntax:

SELECT source_id, ra, dec, parallax
FROM gaiadr2.gaia_source
WHERE parallax between 15 AND 50 AND phot_g_mean_mag >= 9 AND 
phot_g_mean_mag <= 9.5



More on SQL:
 https://www.sqlcourse.com/

ADQL Cookbook:
https://www.gaia.ac.uk/data/gaia-data-release-1/adql-cookbook

More technical document on ADQL: 
https://www.ivoa.net/documents/REC/ADQL/ADQL-20081030.pdf

Gaia archive tutorials:
https://gea.esac.esa.int/archive-help/

Gaia DR2 Model (what parameters? units): 
https://gea.esac.esa.int/archive/documentation/GDR2/Gaia_archive/
chap_datamodel/

https://www.sqlcourse.com/
https://www.gaia.ac.uk/data/gaia-data-release-1/adql-cookbook
https://www.ivoa.net/documents/REC/ADQL/ADQL-20081030.pdf
https://gea.esac.esa.int/archive-help/
https://gea.esac.esa.int/archive/documentation/GDR2/Gaia_archive/chap_datamodel/
https://gea.esac.esa.int/archive/documentation/GDR2/Gaia_archive/chap_datamodel/


 
The result of the query can be downloaded in various formats:
- VOTable; CSV; FITS; JSON

Download your data



Hertzsprung - Russell diagram 
with Gaia
https://www.youtube.com/watch?
v=jutw-lOwriw

https://www.youtube.com/watch?v=jutw-lOwriw
https://www.youtube.com/watch?v=jutw-lOwriw


Example 2: 

Select for top 10000 stars the G-band magnitudes and BP-RP colours.

where BP and RP are ‘blue’ and  ‘red’ pass bands specific to Gaia.

ADQL query:



With the result saved 
in a file, one can plot a 
colour - magnitude 
diagram.

Here is an example of 
Python code for data 
in csv format : 



Example 3: 

Select top 10000 stars in the ‘Solar neighborhood’, i.e. a spherical region of 
radius of 300 parsec (1 pc = 3.26 lyr),

or, equivalently, with parallax > 3 

ADQL query 
(note: here I’ve limited the search only to 10000 objects. The real region contains millions of stars; to 
get them all, omit ‘TOP’; the query will take longer)



.. and the colour - 
magnitude diagram 
from this query:









Next Gaia release (Gaia DR3) : 3 Dec 2020



Questions?



Parameter Inference & 
MCMC
Juliana Kwan



x

y My model is: y = mx + b

Suppose you needed to fit a straight line to some data...

Work out the best fitting values of 
m, b by minimising 𝜒2. 

Need to solve                                 ,



The Bayesian approach: 

Bayes’ Theorem

P(H|D) is the probability of the hypothesis given the data (posterior; this is what we 
want)

P(D|H) is the probability of the data given the hypothesis (likelihood)

P(H) is the prior hypothesis

P(D) is the probability distribution of the data (important for model comparison)



Bayesian parameter estimation involves calculating the likelihood, P(D|H):  

You’ll notice that: 

This is true for Gaussian distributions only!

We must also choose a prior on the parameters, m, b, e.g:                     

                                                      

This represents any external knowledge that we already have about the system, e.g. a 
weighted coin.

Now that we have the likelihood and prior, how should we calculate the posterior? 



Markov Chain Monte Carlo Analyses

In real world applications, we often have many parameters, which makes evaluating the 
posterior expensive. 

Fortunately there are numerical methods to deal with this. 

The Metropolis-Hastings algorithm: 

1. Choose a starting point, x0, calculate L(x0)   (close to what you think the parameters 
should be)

2. Take a step to x1 by calculating L(x1)
3. If L(x1) ≥ L(x0), then keep x1 by adding it to the chain
4. If L(x1) < L(x0), generate a random number, r~U(0,1)

a. If r ≥ L(x1)/L(x0), keep x1 by adding it to the chain
b. If r < L(x1)/L(x0), discard x1 (add x0 to the chain)

5. Repeat steps 2 - 4 until convergence is reached. 



Markov Chain Monte Carlo Analysis

At the end of the process, you will have a chain (list of parameter values) 
that represents the combination of the likelihood and the prior. The density 
of points in the chain is the posterior.

Some caveats: 

● You must check for convergence. MCMC gives the correct posterior in 
the limit of infinite samples. 

● Be careful in your choice of step size - too small and the chain will get 
stuck around the peaks of the posterior, too large and the chain can 
‘step over’ the peaks. 

● Multimodal posteriors require special treatment; see nested sampling 



Helpful packages for parameter inference:

● CosmoMC and GetDist
○ https://cosmologist.info/cosmomc/

● CosmoSIS
○ https://bitbucket.org/joezuntz/cosmosis/wiki/Home

● emcee
○ https://emcee.readthedocs.io/en/stable/

● dynesty
○ https://github.com/joshspeagle/dynesty

● anesthetic 
○ https://anesthetic.readthedocs.io/en/latest/

https://cosmologist.info/cosmomc/
https://bitbucket.org/joezuntz/cosmosis/wiki/Home
https://emcee.readthedocs.io/en/stable/
https://github.com/joshspeagle/dynesty
https://anesthetic.readthedocs.io/en/latest/


Example: Planck 2018 likelihood 

Map of temperature fluctuations in the early 
universe

Map of temperature fluctuations in the early universe Spectrum of fluctuations as a function of angular size

Question: What model parameters best fit the observed fluctuations? 



Example: Planck 2018 likelihood

Download the chains: 
https://wiki.cosmos.esa.int/planckpla/index.php/Cosmological_Parameters

https://wiki.cosmos.esa.int/planckpla/index.php/Cosmological_Parameters


If you want to run them for yourself (long!): 

Download likelihood code: https://pla.esac.esa.int/pla/#cosmology

Install into CosmoMC: https://cosmologist.info/cosmomc/readme_planck.html

https://pla.esac.esa.int/pla/#cosmology
https://cosmologist.info/cosmomc/readme_planck.html


import matplotlib.pyplot as plt
from anesthetic import MCMCSamples
mcmc_root = 
'plikHM_TTTEEE_lowl_lowE_lensing/base_plikHM_TTTEEE_lowl_lowE_lensing'
mcmc=MCMCSamples(root=mcmc_root)
mcmc.plot_2d(['omegabh2','omegach2','H0'], types={'lower':'kde','diagonal':'kde'})

pip install anesthetic (use flag --user if no root access) 

1D marginalized 
posterior 
distributions

2D marginalized posterior 
distributions



Why does this work? 

The file directory contains 

● .paramnames file 

This lists the names of the parameters and their latex labels

● .ranges file 

This lists the min, max values of each parameter. Can be ‘none’

If using CosmoMC, these files are automatically generated.  



Some useful commands...

● mcmc.mean()
● mcmc.median()
● mcmc.std()
● mcmc.describe(): prints mean, std dev, confidence levels for each 

parameter, max/min values
● mcmc.info(): prints names of each column, data type, no. of entries. 



Bayesian statistics is a very powerful tool for analysing large datasets.  

Two functions: 
● Parameter inference: given a certain model, what are the best fitting 

parameters to the observed data?

● Model selection: which model is better able to fit the data?

There are many publically available packages to help you!

Questions? Email: j.kwan@ljmu.ac.uk or message via Slack  

mailto:j.kwan@ljmu.ac.uk


Questions?


