Estimating Neutrino Signals with geoneutrinos.reactors.org

Andrew Barna, Steve Dye U Hawaii

Objective

- Develop and maintain an online tool that estimates antineutrino signals from nuclear power reactors and Earth to serve the scientific and non-proliferation communities
- <u>https://reactors.geoneutrinos.org/</u>
- Interactive tool... complementary to static maps

Overview

- Signal estimator with user-interface and documentation
- Rates and spectra anywhere on Earth- dynamic
- Set locations, enter lat/lon/elev, cursor on map, laptop w/ GPS
- Downloadable plots and energy spectra
- Signal significance calculator, user-defined detection efficiency
- Background information being added

Sources and Reactions

- Sources: power reactors and geo, also SN burst, ⁸B solar
- Reactions: free-proton IBD (pIBD), electron ES (eES)
- Rates in units of 10³² targets / year
- SN burst (10s) include pIBD, eES, pES, CEvNS, IBD of ¹⁶O, ¹²C
- CEvNS rates for 1000 kg

Spectrum Stats- pIBD: Strumia and Vissani (2003)

R_{total} = 1198.3 ± 30.9 NIU

1 NIU (Neutrino Interaction Unit) = 1 interaction/10³² targets/year

· Uncertainty shown obtains from the reactor and geo-neutrino signal uncertainties added in quadrature

IAEA Cores- Huber (2011) + Kopeikin et al. (2021); Avg LF 2022-01 thru 2022-12

R_{reac} = 1162.3 ± 29.8 NIU

 $R_{closest} = 464.7 \pm 11.8 \text{ NIU} (40\% \text{ of } R_{reac})$

D_{closest} = 26.095 km (HARTLEPOOL A-1 elevation 54.3 m)

- · Monthly load factors since 2020 from IAEA-Power Reactor Information System (PRIS)
- 2022 load factors for reactor cores in Ukraine not reported and arbitrarily set to 0
- · Uncertainties shown derive solely from the isotope emission spectra
- · Elevation is height above the WGS84 reference ellipsoid

Reactors

- Monthly load factors for 399 IAEA cores active in 2022 (w/o Ukraine)
- Custom cores presets include research reactors, geo-reactor, + user-defined
- ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu emission spectra 0-10 MeV
 - selectable spectra using conversion, summation, ab initio
- fixed fission energies, mid-cycle fission fractions PWR/BWR, PHWR, MOX
- latest NuFit v5.1 oscillation parameters with switchable mass ordering
- IBD cross section: Strumia and Vissani (2003) or Vogel and Beacom (1999)
- ES cross section: antineutrino, <u>or</u> nubar_e, <u>or</u> nubar_x

Reactor Isotope Emission Spectra

Spectrum Stats- pIBD: Strumia and Vissani (2003)

R_{total} = 5558.1 ± 92.7 NIU

1 NIU (Neutrino Interaction Unit) = 1 interaction/10³² targets/year

+ Uncertainty shown obtains from the reactor and geo-neutrino signal uncertainties added in quadrature

IAEA Cores- Huber (2011) + Kopeikin et al. (2021); Avg LF 2022-01 thru 2022-12

R_{reac} = 14.1 ± 0.4 NIU

 $R_{\text{closest}} = 1.4 \pm 0.0 \text{ NIU} (10\% \text{ of } R_{\text{reac}})$

D_{closest} = 634 km (BUSHEHR-1 elevation -8.7 m)

Custom Cores

R_{custom} = 5498.1 ± 91.6 NIU

R_{closest} = 5498.1 ± 91.6 NIU (100% of R_{reac} + R_{custom})

 $D_{\text{closest}} = 1.81 \text{ km}$ (Arak IR-40 elevation 1750 m)

- Monthly load factors since 2020 from IAEA-Power Reactor Information System (PRIS)
- 2022 load factors for reactor cores in Ukraine not reported and arbitrarily set to 0
- · Uncertainties shown derive solely from the isotope emission spectra
- · Elevation is height above the WGS84 reference ellipsoid

Geo-neutrinos

- Pre-calculated crust signal on 1° x 1° grid (On/Off switch)
- User-defined uniform mantle signal
 - keyed to flux from ²³⁸U + Th/U + K/U- all setable
 - associated mantle radiogenic heating
- Average oscillation survival probability
- U, Th, K spectra from Enomoto
- Include guesses for uncertainties

	Mantle Fluxes (Radiogenic Heating)
	²³⁸ U Mantle Flux: 1.00e+6 cm ⁻² s ⁻¹ (²³⁸ U plus ²³⁵ U: 4.51 TW)
	Th/U Ratio 3.9 (²³² Th: 4.72 TW)
	K/U Ratio 1.0e+4 (⁴⁰ K _β plus ⁴⁰ K _{ec} : 1.55 TW)
ble	Total Mantle Radiogenic Heating: 10.79 TW •Assumes homogeneous element concentrations, PREM mantle mass (4.0023618e+24 kg) and geophysical response (1177062.8 kg cm ⁻²) •A. M. Dziewonski and D. L. Anderson (1981), <i>Preliminary Reference Earth Model</i> (<i>PREM</i>), Phys. Earth Planet. Inter. 25, 297-356 • The settable ²³⁸ U mantle flux does not include the average oscillation survival probability (0.552)
	Crust Fluxes
	Include Crust Fluxes A pre-computed (1*x1*) model of the crust fluxes from ²³⁸ U, ²³² Th, and ⁴⁰ K, kindly provided by W.F. McDonough, is described in Y. Huang et al. (2013), A reference Earth model for the heat producing elements and associated geoneutrino flux, Geochem., Geophys., Geosyst. 14, 2003-2029.
the second	
1	

Antineutrino Energy (MeV)

aeoneutrinos or

Intensity (/MeV/decay)

Comments & Suggestions ?

- Discussions, Q&A here at AAP 2023
- Email to sdye@hawaii.edu and abarna@hawaii.edu
- Submit to https://github.com/geoneutrinos/reactors/issues

Referencing

Please cite this website when using the results of this model in research papers and/or presentations:

A.M. Barna and S.T. Dye (est. 2010). *Antineutrino Model* https:// reactors.geoneutrinos.org. Accessed DAY MONTH YEAR

Documentation is online

(please refrain from citing old paper on arXiv; it is outdated)

Shout out for Support

- NSF 2009 Education and outreach for CSEDI Collaborative Research: Neutrino Geophysics: collaboration between geology and particle physics (award # 0855838)
- NSF 2011 Education and outreach for Collaborative Research: Estimating the mantle contribution to the Geo-neutrino flux at the Sudbury Neutrino Observatory (award # 1068097)
- LLNL 2012 2023 Neutrino signal estimates for *Remote Discovery and Monitoring of Small Reactors* (various subcontracts)

Cŵ \leftarrow

○ A https://reactors.geoneutrinos.org

+

×

90%

Spectrum Stats- pIBD: Strumia and Vissani (2003)

 $R_{\text{total}} = 299.8 \pm 10.8 \text{ NIU}$

1 NIU (Neutrino Interaction Unit) = 1 interaction/10³² targets/year

· Uncertainty shown obtains from the reactor and geo-neutrino signal uncertainties added in quadrature

IAEA Cores- Huber (2011) + Kopeikin et al. (2021); Avg LF 2022-01 thru 2022-12

 $R_{\rm reac} = 262.4 \pm 6.5 \,\rm NIU$

 $R_{closest} = 33.7 \pm 0.8 \text{ NIU} (13\% \text{ of } R_{reac})$

D_{closest} = 75.386 km (HARTLEPOOL A-2 elevation 54.3 m)

· Monthly load factors since 2020 from IAEA-Power Reactor Information System (PRIS)

2022 load factors for reactor cores in Ukraine not reported and arbitrarily set to 0

· Uncertainties shown derive solely from the isotope emission spectra