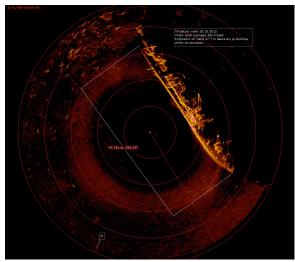
SNIFR - Submarine Neutrino Identification For Reconnaissance

Alex Goldsack

US Virginia-class submarine underway in Groton, Connecticut, July 2004 - U.S. Navy photo by General Dynamics Electric Boat

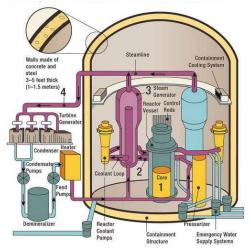
Managing Expectations



• This talk is **not**:

- Representing an actual experiment/project.
- An exhaustive study.
- Detailing detector design.
- An original idea.
- This talk is:
 - A reassessment of an old idea through the lens of modern technology.
 - Based on a mix of hand-wavy calculations and my experience on SK(Gd).
 - My crackpot side-interest.
 - Aiming to promote discussion.

SONAR - Sonic Navigation And Ranging.


- Primary method for tracking and identifying submarines in a military context.
- Active SONAR fires sonic pulses and listens to the reflections.
 - Classic "ping" nowadays a rising tone to provide a range of resolutions and ranges.
- Incredibly precise at short range, often used to map underwater structures.
- Active pings are **very** powerful, not used lightly.
 - Immediately reveals position of active SONAR source.
 - Strong enough to be used as a lethal defence against divers.
 - Range is environment-dependent, but around 300km for the longest range but more often <100km (probably less) [1].
- Passive SONAR listens.
 - Sonic profile can identify specific vessels.
 - Very difficult to make a nuclear sub completely silent (reactor).
 - Range is highly dependent on environment + vessel, can be extremely far in the right conditions (very hard to quantify).

Nuclear Submarine Reactors + Neutrinos

- Most nuclear subs are powered by PWRs.
- Submarine reactors produce up to ~100-200 MWth, 10X less than commercial reactors.
- Can't easily switch off their reactor and still function always producing neutrinos.
 - Decays when not critical will still produce neutrinos when shutdown, at ~7% the full rate with a half life of a few hours.
- Detecting submarine neutrinos would give a clear indication of a nuclear sub.
- But neutrino detectors aren't small.
- And submarines don't like to sit by the coast, static, while detectors accumulate enough data to identify...

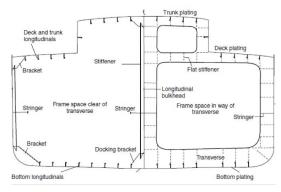
SNIFR Proposition

- KING'S LONDON
- Proposition: take a neutrino detector, put it on a big ship, and scour the seas for submarines.

NuDAR vs. SONAR Neutrino Detection And Ranging (though ranging is a bit of a stretch...)

- Let's compare this to SONAR...
- Advantages:
 - Entirely passive no "pinging", just "sniffing" for neutrinos.
 - Environment/situation independent neutrino backgrounds are effectively constant with weather and location on the sea.
 - Don't need your vessel to be quiet.
- Disadvantages:
 - Imprecise ranging nu flux is proportional to reactor output. Knowledge of current reactor output is needed to predict flux, and interaction rate must be high to draw ranging conclusions.
 - No directionality IBD products are (effectively) uncoupled from neutrino direction. Would need to triangulate positions with multiple detectors, made worse by ranging issues.
 - No source categorisation can (sometimes) identify submarines by their sonic signature. No way of discerning different reactor types.
 - Requires long exposure time ~hours in range of sub (discussed later).

Detector Technology


- Detector requirements:
 - Sensitive to reactor neutrinos/IBD.
 - Can handle surface cosmic flux (spallation) + other BGs (the sea is full of mysteries...).
 - Highly-scalable, ideally modular.
 - Hardy able to withstand potentially rough seas.
 - Relatively power-conservative.
 - Safe to keep on a ship.
- Gd-loaded water Cherenkov.
 - Very scalable, sensitive to IBD but PMTs with enough photocoverage are somewhat delicate, surface-level backgrounds will be difficult to remove. Very little granularity.
- Scintillator.
 - Highly sensitive to low energy events (+ backgrounds?). Potentially expensive at scale and requires clean environment. Can be segmented and modularised.
- Liquid Argon.
 - Very good tracking and particle ID. Very expensive at scale, requires cryogenics which may not play well on a ship, delicate wires. Alex Goldsack (KCL) - SNIFR - Applied Antineutrino Physics 2023

Vessel

- Oil tankers benefit liquid-based detectors but are closed-top => difficult install.
- Cargo ship is much more accessible, infrastructure to move heavy equipment into the hold already exists.
- Very very large capacity far in excess of 100kt, ~\$100M.
- Build the detector around matching the 20-foot container design?
- Many sub detectors (natural segmentation) each in a container with external connections.



Class	Capacity [DWkT]	New Price
Product Tanker	10-60	\$43M
Panamax	60-80	60.7M
Aframax	80-120	\$60.7M
Suezmax	120-200	60.7M
Very Large Crude Carrier (VLCC)	200-320	\$120M
Ultra Large Crude Carrier (ULCC)	320 +	\$120M
Class	Capacity [TEU]	Capacity $[m^3]$
Small Feeder	<1,000	<38,550
Feeder	1,001-2,000	38,559-77,100
Feedermax	2,001-3,000	77,139-115,650
Panamax	3,001-5,100	$115,\!689\!-\!196,\!605$
Post-Panamax	5,101-10,000	$196,\!644 \!-\! 385,\!500$
New Panamax	10,001-14,500	385,539-558,975
Ultra Large Container Vessel	14,501+	559,014 +

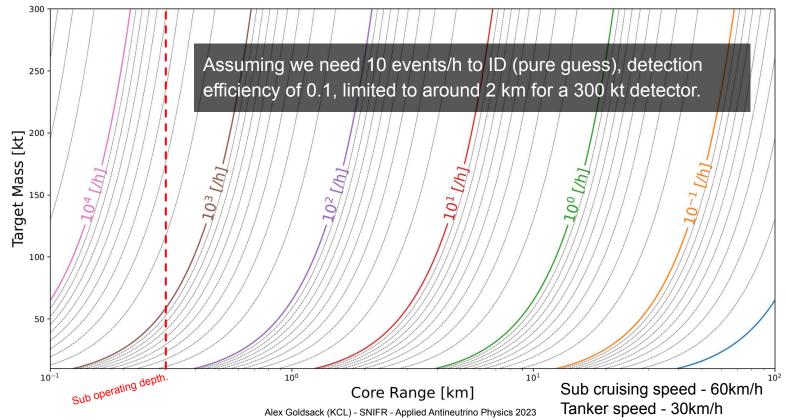
Sensitivity

- What rates do we need to actually identify a submarine?
- Heavily dependent on backgrounds and detection efficiency.
 - Which is in turn dependent on detector technology and would need some MC.
- Also dependent on deployment and how long subs are "in range".
- Let's wave some hands...

Sensitivity (Based on SKGd)

- Base the interaction rate on the predicted IBD rate at SK due to the Mihama power plant (P_{MH} =2440 MWth, r_{MH} =146 km away), as calculated in [2].
- IBD rate *N* in a detector of mass *M* for reactor power *P* at distance *r* via:

$$N = \frac{M}{M_{SK}} \times \frac{Pr^{-2}}{P_{MH}r_{MH}^{-2}}N_{MH}$$


- Where M_{SK} =22.5 kt is the fiducial mass of SK.
- Subs typically have 100-200 MWth reactors, but likely aren't running close to full power at all times. Assume 50 MWth for conservative estimates.
- For a single vessel, 300 kt is likely an upper limit of target material.

^{[2] -} Reactor neutrinos in a gadolinium-loaded Super-Kamiokande, Alex Goldsack 2022.

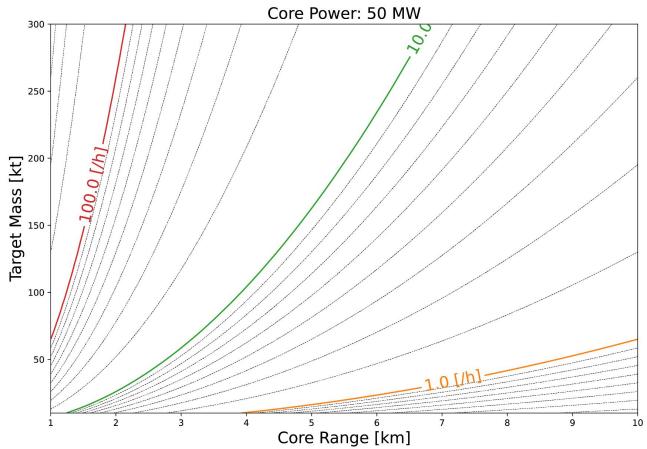
Rates from 50 MW Core

• Does NOT consider detection efficiency (SKGd search is 10% efficient)

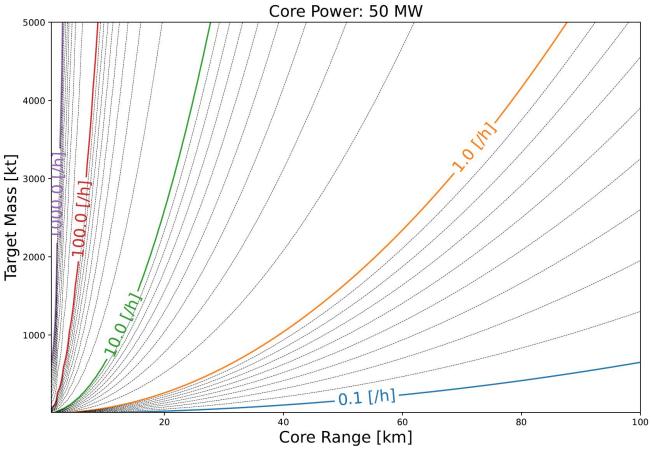
Viability

- Hard to evaluate the range given SONAR's environmental factors and the (understandable) lack of documentation.
- Ranges ~km are comparable to passive SONAR in unfavourable situations.
- Environment invariance is main advantage over SONAR, as well as it being uncounterable (subs can't go neutrino-quiet).
- Cost of an aircraft carrier is ~\$1-10B, large SNIFR ship is likely ~\$0.5-1B.
 - Based on costs of modern neutrino experiments.
 - Quite a hard sell for a ship with effectively one use.
- Could have a fleet of SNIFR vessels blanketing areas/hunting, or shadowing other ships, or run a few on commercial routes and cross your fingers.
- If subs like to shadow commercial shipping lanes to hide their sound, this is *very* viable...

Summary



- SONAR has long been the main method to track nuclear submarines.
- SONAR suffers from heavy environment dependence and other limitations.
- The neutrinos produced from the submarine's reactor can't be shielded.
- If measured with significance, this would provide an environment-independent method to identify nuclear subs that cannot be countered.
- SNIFR proposes building a large-scale detector on an oil tanker or cargo ship.
- Not clear which technology is best suited given the unique deployment.
 - Gd-loaded WC, scintillator and LAr are considered.
- Preliminary rate studies have been performed based on SK studies.
- "NuDAR" won't have long range in single-vessel deployment, ~1km.
- May still provide a viable alternative sub-tracking technique to SONAR.
- Especially in multi-vessel deployment.


Close Range Interaction Rates

Alex Goldsack (KCL) - SNIFR - Applied Antineutrino Physics 2023

Long Range Interaction Rates

Alex Goldsack (KCL) - SNIFR - Applied Antineutrino Physics 2023