

Development of a High-Energy Two-Component Gamma Calibration Source

Igor Jovanovic, Colton Graham, Junwoo Bae, Kristofer Ogren University of Michigan

> Steven Dazeley Lawrence Livermore National Laboratory

Applied Antineutrino Physics Workshop September 19, 2023

Correlated-particle sources for calibrating (large) antineutrino detectors

- High-energy gamma rays \rightarrow calibration of IBD positron response
- Neutrons \rightarrow direct calibration of neutron capture response
- Correlated-particle sources \rightarrow timing information improves event reconstruction

¹⁶N can be produced by neutron irradiation of CO₂ gas and is transferred to a decay chamber inside the detector volume

Decay Chamber Design

- A design for source and delivery system has been investigated in the earlier stages of AIT-NEO.
- ¹⁶N is produced via ¹⁶O(n,p)¹⁶N reactions in CO₂ irradiated by a DT neutron generator.
- The decay chamber is lined with plastic scintillator to detect beta particles emitted during ¹⁶N decay and provide a time-tag for the gamma-rays.
- ¹⁶N has a short half-life (7.1 s), so the source must be continually replenished and cycled through the decay chamber.

We conducted modeling and production tests for ¹⁶O(n,p)¹⁶N

I. Jovanovic

CO₂ system can be adapted to produce delayed neutrons

K. Ogren, A. Kavner, S. Dazeley, and I. Jovanovic, NIM A 1033, 166654 (2022).

¹⁷N Beta-Neutron Coincidence Time Distribution

I. Jovanovic

¹³C(a,n)¹⁶O could provide an alternative source of 6.1-MeV gamma rays correlated with neutrons

Cross-section for ${}^{13}C(\alpha,n){}^{16}O$ is about 170 mb at 5.5 MeV (JANIS). Branching ratio to 6.1-MeV ${}^{16}O$ excited state is about ~30% for alpha energy of ~5.5 MeV. This special source is prepared from a homogenous mixture of the ²⁴¹Am and ¹³C powder which is compacted and double encapsulated in stainless steel. The capsules are sealed by tungsten inert gas welding.

Gamma/neutron ratio: ~3%

\$70k

Typical Am-241 activity: 160 mCi (5,9 GBq) (tolerance \pm 15%) Typical photon output per 4¶ steradian (6.13 MeV) 1.3 x 10³ ph /sec Typical neutron emission per 4¶ steradian (4 MeV) 4 x 10⁴ neutrons/sec

Maximal activity: 600 GBq ISO classification: 66646 Special form certificate: CZ/1021/S-96 Recommended working life: 15 years

- Control over gamma/neutron ratio by source design (alpha stopping)
- Permanent placement in the detector?
- No bulky shielding required for storage as in the case of ²⁵²Cf or AmBe
- Tagging in main detector volume or in dedicated detector

Daya Bay ²⁴¹Am¹³C neutron source

Figure 6.4: *Left*: Fully assembled source capsule. *Right:* Schematic of the AmC source components, viewed from the side.

Fig. 3. Mechanical drawing of the 241 Am $^{-13}$ C source assembly. See text for more details.

E. Ludert. Detailed characterization of nuclear recoil pulse shape discrimination in the DarkSide-50 direct dark matter experiment. University of Hawaii. 2017.

- Previous ²⁴¹Am¹³C source designs have used a gold foil between the Am and C to reduce alpha energy and avoid gamma ray emission
- In the Daya Bay design (right), the ²⁴¹Am, foil, and ¹³C are sandwiched tightly and pressed into a stainless steel cup by an acrylic plunger
- We have been attempting to do the <u>opposite</u>: avoid reducing the alpha energy and thus maximize the chance for 6.1-MeV gamma emission

Candidate alpha sources

We have to consider not only the alpha energy requirement but also the specific activity and regulatory controls.

Conceptual source design

Copper selected to minimize (a,n) – no neutron production below ~8 MeV

Simulations of neutron and gamma-ray production in ²⁴¹Am¹³C

- Geant4
- FLUKA
- Semi-analytical calculation based on linear interpolation of measured stopping power, cross-section, and branching ratio

ratio at 5.5 MeV: 0.37

- 1 cm radius disk
- 1 mCi ²⁴¹Am disk of 0.1 µm thickness
- ¹³C of 1–2 µm thickness
- Gamma-to-neutron ratio: ~25% one order of magnitude increase over homogeneous source, but there is large uncertainty in simulations
- Expected 6.1-MeV gamma rate (using our conservative semi-analytical estimate): 10–100 s⁻¹

²⁴¹Am deposited planchet

²⁴¹Am deposited planchet measured with an imaging plate

²⁴¹Am-¹³C preliminary characterization

¹³C deposited sample (~1.5 μm)

²⁴¹Am-¹³C preliminary characterization

Summary

- ²⁴¹Am¹³C may serve as an alternative to ¹⁶N as a source of 6.1-MeV gamma rays with coincident neutrons
- Does not require an expensive DT generator facility
- Solid-state calibration source that can be rapidly turned on/off by mechanical actuation → permanent deployment?
- Control gamma/neutron ratio by source design
- Some uncertainties in simulations \rightarrow address in experiment
- Mechanical actuation could be extended to more standard sources such as AmBe

Backup

Source tagging

Option 1: Tag using neutron capture in the large detector

- simple but it is a looser coincidence tag
- **Option 2: Dedicated neutron tagging detector at the source**
- more complex and requires PSD at low energies to distinguish neutrons
- may also use capture-gated detector

SiPM

NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES