

2023/09/19 16th Applied Antineutrino Physics workshop

Measurement of reactor neutrinos using plastic scintillator cube

<u>S. Hasegawa¹</u>, T. Konno², T. Kawasaki²

- 1: Japan Atomic Energy Agency
- 2; Kitasato University

Measurement of reactor neutrinos using plastic scintillator array

Plastic Anti-Neutrino Detector Array (PANDA Detector)

Ohi reactor 4

Operated by Kansai Electric Power Company (KEPCO)

- Locates at Fukui (Hokuriku area)
- Two reactors restarted from 2018
- -Reactor 3 : 1.18MW
- -Reactor 4 : 1.18MW

Experiment at 2019 Measurement of reactor $\bar{\nu}_e$ energy spectrum by On – Off subtraction

- Reactor ON : 38 days (2019.5.28 7.4) \rightarrow Neutrino + Back ground
- Reactor OFF : 33 days (2019.7.5 8.7) \rightarrow Back ground only

Neutrino extraction

T. Konno ,AAP 2019

- ON,OFF: Accidental subtracted OFF/ON ration; +0.91±0.05%
- Error of ON -OFF from stat
- IBD events; 177.6 ± 38.7 (/day)

Compared MC

Succeeded measurement of neutrino spectrum

Next step

- Improvement of reactor neutrino sensitivity
- Reduce Background
- Detection efficiency

Need to reduce gamma BG

- ✓ Energy separation
 - \Rightarrow 10 x 10 x 100 cm unit
 - \rightarrow Build to 1m³ unit

Position separation

- \Rightarrow PMT both-ends readout
 - \rightarrow resolution ~20 cm in module difficult to separate positron from annihilation γ

=> cannot reduce contingencies

 n-Gd capture particles are indistinguishable from γ-rays=> environmental γ-rays, etc.

- High vertex resolution
 - Small scintillator unit $\Rightarrow 2 \times 2 \times 2 \text{ cm module}$ \rightarrow Build to 1m³ unit
 - & SiPM both-ends readout to separate positron from annihilation γ
 - \Rightarrow delayed coincidence

Start this project from 2022

Plastic scintillator cube

How to make ?

- ✓ Scintillation material in each grid filling pellets / set cubes
- ✓ Through WLS
- ✓ SiPM readout

....

Detector mockup of about 10 cm

- Plastic scintillator pellets (about
 - 2~3mm)
- Reflective material is the partition plate Furukawa Electric MCPET 0.5mm thick
- > 3D readout with WLS fiber
 - Kuraray Y-11 (ϕ 1mm)
- Not SiPM

Test detector

Readout test

- Observation of light in the same cell
- Confirms positional synchronization measurement on a cell-by-cell.
- Next beam test 64 ch readout

Readout test

• Next beam test 64 ch readout

Reactor Site; research reactor

Pros:

- Detector set in close (~ a few m)
- Short cycle operation (26 days)
- Easier to Obtain operation information in detail
- Easier to access for research

Cons:

- Neutrino source has a finite size near the reactor location
- Low power
- High back ground
- Restriction on installation location

月

JRR-3 Japan research reactor No.3 20MW

JRR-3 BG measurement (JAEA

10m location; back of 1G BL

5 x 25 x 50cm BPE plates 5 x 10 x 20cm Pb blocks

	No Shield (Hz)	Shield (Hz)
Y	130	5
n	3 - 4	0.02

BG measurement; 1 week 🦚

Summary

- In Japan, reactor monitors with neutrino IBD signal detection using plastic scintillators have been developing.
- Cell-type detector is developed for the next PANDA.
 A prototype was assembled and testing.
- Background measurements were performed at the research reactor JRR-3.
- Next, beam test with electron beam for test detector. An investigation of the cause of variation of BG should be conducted.

Thanks!

This work was supported JSPS KAKENHI Grant 22K03654, and JAEA Fund for Exploratory Researches (Houga fund)