CEvNS at the Dresden-II reactor and beyond

C.M. Lewis

Donostia International Physics Center (DIPC), Universidad del País Vasco Enrico Fermi Institute (EFI), University of Chicago

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) D.Z. Freedman, Phys. Rev. D 9 (1974) 1389

What you can do with it

2000

4000

6000

ns

8000

10000

12000

Enectali Figueroa-Feliciano / vMass 2013 / Milano Low recoil energies... but high v flux

No background subtraction (steady-state source)... but some locations have excellent background reduction

Spallation produces x200 the neutrons per v

Ge PPCs

Combination ideal for precision CEvNS studies:

- Mass
- Radiopurity
- Energy Resolution
- Low Threshold

Whats gets a threshold low enough in that environment?

Compact

DAQ

Seeing CEvNS means not falling into the old trap... (... of not being able to interpret it!)

Two slightly different QF models

Inclusion of a finite magnetic moment contribution

Which is it? New physics when really just unknown detector or missed opportunity?

A project of passion: Ge NR response

*comments on CONUS QF paper: arXiv:2203.00750

Passion without end - more measurements

R. Strauss,^f M. Vignati,^{b,k} M. Vivier,^a V. Wagner^f and A. Wex^f

2021 JINST 16 P07032

11

CsI @ OSURR

Returning to our data (+ moderator)

Final data run:

- extra HDPE
- climate control (cryocooler was working overtime)

Now, with a small, but clear, CEvNS spectrum overlaid, statistical significance may be achieved

This is what gets everyone hot-and-bothered

The Bayesian Takeover

 $P(\boldsymbol{\Theta}|\boldsymbol{D}, M) = \frac{P(\boldsymbol{D}|\boldsymbol{\Theta}, M)P(\boldsymbol{\Theta}|M)}{P(\boldsymbol{D}|M)}$

 $P(\mathbf{D}|M) = \int P(\mathbf{D}|\Theta, M) P(\Theta|M) d^{N}\Theta$ Bayesian evidence integral

Likelihood ratio approach untenable ($\Delta k = o$)

Bayes factor method can handle non-nested models

Most common complaint: priors (subjectivity) Only prior here is an experimentally measured EC peak (and equivalent between alternative and null)

With MCMC techniques and computational power, they can be widely applied

Bayesian evidence ratio

$log_{10}(B_{10})$	B ₁₀	Interpretation
0 to $\frac{1}{2}$	1 to 3.2	Weak
$\frac{1}{2}$ to 1	3.2 to 10	Moderate
1 to 2	10 to 100	Strong
>2	>100	Decisive

QF Model	B_{10} (MHVE)	B_{10} (KOP)
Fef	34.0	34.8
YBe	13.2	11.2
Lindhard	4.0	3.1

Relative likelihood => 6.7 (Fef)

p-value => ~ 1 x 10⁻³ => ~ 3.2 σ

PHYSICAL REVIEW LETTERS 129, 211802 (2022)

Measurement of Coherent Elastic Neutrino-Nucleus Scattering from Reactor Antineutrinos

J. Colaresi,¹ J. I. Collar⁽⁰⁾,^{2,*} T. W. Hossbach⁽⁰⁾,³ C. M. Lewis⁽⁰⁾,² and K. M. Yocum¹

But this is not the end...

Ringhals nuclear plant

still with just a 60x60 cm footprint

Ringhals - viability

Signal-to-background of ~ 40 expected (present was $\frac{1}{4}$)

refurbished specs \gg significantly reduced threshold

>> Backgrounds O(1 ckkd) fairly constant all the way to threshold

quick note about CEvNS vs IBD

Thanks

Questions?

Extra: QFs in Ge

*comments on CONUS sub-keV QF paper: arXiv:2203.00750