Geoneutrinos: messengers from the inaccessible Earth

Virginia Strati University of Ferrara – INFN Ferrara strati@fe.infn.it

Applied Antineutrino Physics Workshop 2023 18 - 21 September 2023 - York

Open questions about natural radioactivity in the Earth

 What is the radiogenic contribution to terrestrial heat production?

 At which thermal conditions the Earth initially is formed?

 How much U and Th are in the crust and in the mantle?

• What is hidden in the Earth's core?

Heat power of the Earth

- Heat power of the Earth Q [30-49 TW] is the equivalent of ~ 10⁴ nuclear power plants.
- Heat flow observations are sparse, non-uniformly distributed and not reliable in the oceans.
- The quantitative assessment of heat transport by **hydrothermal circulation** remains a difficult task.

75 - 85 85 - 95	
95 - 150	
150 - 450	
A State of the second sec	
	Ho
A LEAN A LEANT	
	Da
A Company	

DEEEDENCE	Continents	Oceans	Total
REFERENCE	q _{c⊤} [mW m⁻²]	q _{ocs} [mW m ⁻²]	Q (TW)
Williams et al., 1974	61	92	43 ± 6
Davies, 1980	55	95 ± 10	41 ± 4
Sclater et al., 1980	57	99	42
Pollack et al., 1993	65 ± 2	101 ± 2	44 ± 1
Hofmeister and Criss, 2005	61	65	31 ± 1
Jaupart et al., 2015	65	107	46 ± 2
Davies and Davies, 2010	71	105	47 ± 2
Davies, 2013	65	96	45
Lucazeau, 2019	66.7	89.0	44

Earth's heat budget

- Neglecting tidal dissipation and gravitation contraction (<0.5 TW), the two contributions to the total heat loss (Q) are:
- Secular Cooling (C): cooling down caused by the initial hot environment of early formation's stages
- Radiogenic Heat (H) due to naturally occurring decays of Heat Producing Elements (HPEs), i.e. U, Th and K, inside our planet.
- The mass of the lithosphere (~ 2% of the Earth's mass) contains ~ 40% of the total estimated HPEs and it produces H_{LS} ~ 8 TW.
- Radiogenic power of the **mantle** H_M and the contributions to C from mantle (C_M) and core (C_C) are model dependent.

 \mathbb{C}

Different models of the Bulk Silicate Earth*

	CC	GC GC	GD	H FR
	COSMOCHEMICAL	GEOCHEMICAL	GEODYNAMICAL	FULLY RADIOGENIC
	 Enstatites chondrites Sufficiently high iron content to explain the metallic core 	 Chondritic compositions for refractory lithophile elements Constraints from terrestrial samples 	 Energetics arguments of mantle convection Observed surface heat loss 	• The terrestrial heat (47 TW) is assumed to be fully accounted by radiogenic production
H (U+Th+K) [TW]	11	20	34	47
M (U) [10 ¹⁶ kg]	5	8	14	20
	Temp	perature of the Earth at	initial stage of its form	nation

*Bulk Silicate Earth: Lithosphere + Mantle

Geo-neutrinos: anti-neutrinos from the Earth

U, Th and ⁴⁰K in the Earth release heat together with anti-neutrinos, in a **well-fixed ratio**:

Decay	$T_{1/2}$	E_{\max}	Q	$arepsilon_{ar{ u}}$	$arepsilon_H$
	$[10^9 \mathrm{~yr}]$	[MeV]	[MeV]	$[\mathrm{kg}^{-1}\mathrm{s}^{-1}]$	[W/kg]
$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8 \ ^{4}\text{He} + 6e + 6\bar{\nu}$	4.47	3.26	51.7	7.46×10^7	0.95×10^{-4}
$^{232}\mathrm{Th} \rightarrow ^{208}\mathrm{Pb} + 6~^{4}\mathrm{He} + 4e + 4\bar{\nu}$	14.0	2.25	42.7	1.62×10^7	0.27×10^{-4}
$^{40}\text{K} \to {}^{40}\text{Ca} + e + \bar{\nu} \ (89\%)$	1.28	1.311	1.311	2.32×10^8	0.22×10^{-4}

- Earth emits (mainly) antineutrinos $\Phi_{\overline{v}} \sim 10^6 \text{ cm}^{-2} \text{s}^{-1}$ whereas Sun shines in neutrinos
- A fraction of geo-neutrinos from U and Th (not from 40 K) are above threshold for inverse β on protons:

 $\bar{\nu} + p \rightarrow e^+ + n - 1.806 \, MeV$

- Different components can be distinguished due to different energy spectra: e. g. anti-v with highest energy are from U
- Signal unit: **1 TNU** = one event per 10³² free protons/year

Borexino and KamLAND experiments

Borexino

Gran Sasso National Laboratories -1400 m (3800 MWE) 300 ton Liquid Scintillator ~2200 8" PMTs

KamLAND

Kamioka mine -1000 m (2700 MWE) 1 kton Liquid Scintillator 1325 17" PMTs and 554 20" PMTs

Borexino and KamLAND geoneutrino results

- Horizontal bars traces the **expected signal** at 1σ C.L.
- In the second decade of the 21st century the results published with greater statistical significance highlighted the necessity of geophysical and geological models for understanding geoneutrino signal.

Borexino collaboration, 2020 - PRD - 101 (1)

Mantle geoneutrino signals from experimental signal

$S_{Exp}^{i}(U+Th) = S_{M}^{i}(U+Th) + S_{NFC}^{i}(U+Th) + S_{FFC}^{i}(U+Th) + S_{CLM}^{i}(U+Th)$

- U and Th distributed in the Near Field Crust (NFC) (i.e. ~ 500 km within the detector) gives a significant contribution to the signal (~ 50% of the total). The modeling of the NFC should be built with local geochemical and/or geophysical information
- The signal of **the Far Field Crust (FFC)** and of the **Continental Lithospheric Mantle (CLM)** is modeling based on global reference models.

Mantle geoneutrinos (KL)

$S_{M}^{i}(U+Th) = S_{Exp}^{i}(U+Th) - S_{NFC}^{i}(U+Th) - S_{FFC}^{i}(U+Th) - S_{CLM}^{i}(U+Th)$

Combined mantle geoneutrinos (KL + BX)

The joint distribution $S_M^{KL+BX}(U + Th)$ can be inferred from the mantle signal's PDFs of the two experiments by requiring that:

Where correlations need to be properly accounted for:

- » $S_{FFC}^{KL}(U+Th) \propto S_{FFC}^{BX}(U+Th)$
- » $S_{CLM}^{KL}(U+Th) \propto S_{CLM}^{BX}(U+Th)$

are fully correlated, since they are derived from the same geophysical and geochemical model

Mantle radiogenic power (KL+BX)

	Poor	Medium	Rich	KL+BX
H _M (U+Th) [TW]	3.2 ^{+2.0} -2.1	9.3 ± 2.9	20.2 ^{+3.2} -3.3	10.3 ^{+5.9} -6.4

Expected geoneutrino signal at SNO+

- Deepest underground detector (~ 5800 MWE)
- 780 tons of LS detector with ~ 9300 PMTs
- Expected react-v in [1.8-3.3 MeV] = 48.5^{+1.8}-1.5 TNU (S_{rea} / S_{geo} ~ 1.2)

	S(U+Th) [TNU]
	50.2 ^{+9.7} -8.1
Wipperfurth et al., 2020 (using global crustal models)	46.2 ^{+9.3} -7.7
	46.8 ^{+9.3} -7.8
Strati et al., 2017 (combining global crustal model and local geological data)	41.8 ^{+9.6} -6.2

Expected geoneutrino signal at JUNO

- JUNO is a 20 kton LS detector surrounded by ~18.000 20" PMT
- Expected geo-v ~ 400
 events/year (~ 40 TNU)
- Expected react-v in [1.8-3.3 MeV] ~ 260 TNU (S_{rea} / S_{geo} ~ 7)

	N° of cores	Thermal power/core
Yangjiang	6	2.9 GW
Taishan	2	4.6 GW

~ 260 TNU (S _{rea} / S _{geo} ~ 7)	R	0 75 150 km
	110° 112°	114°
		S(U+Th) [TNU]
Strati et al., 2015 (using global crustal model)		39.7 ^{+6.5} -5.2
Wipperfurth et al., 2020		41.3 ^{+7.5} -6.3
(using global crustal models)		41.2 ^{+7.6} -6.4 40.0 ^{+7.4} -6.2
Gao et al., 2020 (*) (combining global crustal model and	local geological data)	49.1 ^{+5.6} -5.0

Take-away messages

- To deeply understand the experimental geoneutrino results, the use of refined geological models is essential
- The Borexino (KamLAND) observations favor geological models that predict a relatively high (low) concentration of radioactive elements in the mantle
- The combined mantle measurements (BX + KL) falls within the prediction of the Medium-H models
- The era of "multi-site detection" of geoneutrinos is definitely open...

For more information:

Bellini, G., K. Inoue, F. Mantovani, A. Serafini, V. Strati & H. Watanabe (2021) Geoneutrinos and geoscience: an intriguing joint-venture. *La Rivista del Nuovo Cimento*, 45, 1-105

Thank you