

Sensitivity Tool for Antineutrino Monitoring of Small Modular Reactors

Andrew Conant¹ Sophie Hitson^{1,2} Matthew Heath¹ Jason Newby¹

¹Oak Ridge National Laboratory; ²University of Tennessee, Knoxville

Applied Antineutrino Physics (AAP) – York, England

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Overview

National Laboratory

- Small modular reactors (SMRs) are a promising technology to meet global energy demands while offering flexible power loads
- SMRs are the most likely Generation IV reactor to first reach commercial operation
- Capability for neutrino detectors for SMR applications has been underexplored

Reactor Fact Sheet

Open slide master to edit

SMR Design Differences vs. LWRs

- Smaller power by an order of magnitude
- Potential for multiple modules on a singular site
- Infrequent or non-existent refuelings
- Can be of any design (Gen IV+, not just LWR)
 - Molten salt
 - Pebble bed
 - Liquid metal

<u>NuScale Power Overview Future</u> <u>Vision of Nuclear R&D</u>

IAEA Safeguards of Current Reactors

- Comprehensive Safeguards Agreements (CSA)
 - Verification that a state's declaration of nuclear material is complete
- Additional Protocol (AP)
 - Supplement agreement for declared and undeclared use at reactors
- Material accountancy & containment/surveillance
 - Continuity of knowledge (CoK) is key

Safeguards Challenges of SMRs

Feature	LWR	SMR
Fueling (FF) (Storage of FF and loading)	On-site – refuel every 12-24 months – 40 year life	On-site or off-site (Factory Site or Service Facility) – refuel few times if ever over lifetime – 40-60 year life
Spent Fuel (SF) (Removal from core and storage)	SF stored in pool to cool – shipped after years to dry storage or reprocessing (May have 40 year old fuel on site)	 SF may be stored on-site by reactor or in pools or casks Shipped to supplier State Fuel remains in reactor for life
Reactor core (CF) (Fuel in vessel in operation)	Reactor core access during refueling	Reactor core may only be accessible during initial loading – tight spacing may make reactor cores refueled on site difficult to access
Operations – Power levels, continuity of knowledge of CF, SF	Refueling allows for access and analysis of core 12-24 months	With infrequent or no refueling – no information on core fuel status could occur for decades
Decommissioning – Removal of all fuels and essential equipment	D&D activities on-site including defueling and removal of Essential Equipment with IAEA inspection and visitation rights	SMR can be dismantled and shipped complete to supplier

<u>B. Boyer "Understanding the Specific Small</u> <u>Modular Reactor Safeguards Challenges."</u> 2016

How could neutrinos play a role?

- Verification of plant operation
 - Plant on vs. off status

6

- Single unit status verification
 - (N) vs. (N-1) reactors operating
- Single unit power uprate/downrate
 - Unit X operations at +/- power

Sensitivity tool for Mobile Antineutrino Demonstrator (MAD)

- Current U.S. project to construct & deploy mobile ton-scale antineutrino detector
 - Several reactor site deployment options
- Develop easy tool to understand sensitivities of aboveground detectors for applications
 - Python-based
 - Communicate various use cases DAK RIDGE Jational Laboratory

Research reactor, 85 MW_t

Tool Structure

Source Spectrum [MW/m²/MeV]

- 4 isotopes
- Conversion/summation
- Global data
- IBD cross-section
- Oscillation

8

Reactor input calculation

- Multiple detectors and reactors
- Fission fractions for U and Pu isotopes
- Time-dependent capability
- Neutrino spectrum from Huber-Mueller

9

National Laboratory

Example fission fractions

Open slide master to edit

Detector and background

- Near-field detector
 - Based on PROSPECT systematics
 - Response matrix
 - Selection efficiency
 - Option for custom mass and efficiencies
- Background model
 - Based on PROSPECT backgrounds
 - Fixed percentage backgrounds

Statistical analysis tool

- Use **phyf** fitting code to form confidence intervals
- Feed in output of neutrino event rates from signal/BG
- Form signal and background PDFs
- Sample from PDFs to form fake datasets
- 5% false positive and false negative rates

Example SMR facility layout

- N reactors, M detectors
- 12 power modules
 Each 250 MWt, ~ 100 MWe
- 3 detector locations
 - Approximately same distance from reactor array boundary
 - Considered as three individual detectors for this study

Example analysis for 12 unit SMR plant

- H₀: All units in off status
- H_A: All units in on status
- Relationship with distance
 nearly identical

13

National Laboratory

Detector	Distance	
Position	(m)	Time (d)
1	34	1.8
2	34	1.3
3	34	1.6
1	43	4.3
2	43	3.8
3	43	4.5
1	53	9.4
2	53	7.8
3	53	8.7
1	63	16.9
2	63	45.9
3	63	16.2
1	73	31.9
2	73	28.1
3	73	28.1

Example analysis for single unit operation at increased power Time to 95% Confidence Level of 11/12 vs. 12/12 Reactor Operation Relationship with Detector Distance and Power per Area

- H₀: All reactors at nominal power
- H_A: Single reactor at increased power
- Super-positional measure MW/m²
 measure not sufficient

14

To the future

- Understand the relevant questions to answer in the operations and international safeguards context
 - E.g., Power measurement from a reactor operator perspective is likely not desired
- Calculate reactor power measurement and quantification of fissile isotope vector
- Explore MAD-relevant possibilities for reactor deployment
- Streamline tool for simple user input and manipulation

Thanks to MAD Collaboration

