Antineutrino Detection & Technology

Steven Dazeley

Sept 18, 2023

LLNL-PRES-854344

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview

First – I apologize. I cannot cover everything. Also I cannot rule out a Livermore bias. My excuse is I have to get along with folks when I go back home...... 🙂

- State of the art where are we?
- Summary of interaction types Inverse Beta, Electron scattering, CEvNS
- Needed capabilities?

Looking forward:

- Detection materials new plastics, liquids
- Long-term operation considerations
- Scaling
- Innovative segmented designs
- Photodetection
- Electron scattering and CEvNS
- Summary and the view ahead

Reactor neutrino experiments – state of the art (deep)

(Pure water phase) <u>Allega et al.</u> <u>Phys. Rev. Lett. 130,</u> <u>091801</u>

e.g. <u>Abe et al.</u> <u>Phys. Rev. Lett.</u> 100, 221803, (2008)

	SNO+ water phase	<u>KamLAND</u>	<u>JUNO</u>
Target mass	0.9 kt	1 kt	20 kt
PMT coverage	55% (including light concentrators)	34%	78%
Detection Material	Water	Pseudocumene + min. oil	Linear Alkylbenzene
Energy Res.	~50% @ 1 MeV (est.)	6.4% @ 1 MeV	3% @ 1 MeV
Purpose	Neutrinoless double beta decay	Measure θ_{12}	Neutrino mass hierarchy

<u>JUNO</u>

At > ~1km depth, cosmogenic backgrounds are suppressed.

Pure scintillator (or water) designs are favored for simplicity, long attenuation lengths, large volumes.

e.g. Angel Abusleme et al. 2022 Chinese Phys. C 46 123001

KamLAND

Reactor neutrino experiments – state of the art (mid depth) θ_{13} experiments in early 2000s.

- Shorter baselines → shallower deployment. Need to work harder to defeat cosmogenic backgrounds.
- E.g. employ gadolinium doping
- Nested scintillator volume designs were in part forced by the characteristics of neutron capture on gadolinium

Vol Name	Material	Purpose	RENO
Target volume	Gd-doped scintillator	Detect the e⁺ and neutron capture	Physical Review Letters. 108 (18): 191802Daya BayPhysical Review Letters. 108 (17): 171803Double ChoozPhysical Review Letters. 108, 131801
Gamma-catcher	Non doped scintillator	Ensures full energy recovery from Gd-neutron capture	
Buffer volume	Mineral oil	PMT-related gamma-rays shielded from scintillator	
Veto	Water	Veto events associated with recent passage of muon	

<u>RENO</u>

Reactor neutrino experiments – state of the art (Surface deployments)

- Ultra-short baselines \rightarrow aboveground deployments.
- Cosmogenic fast neutrons. Topological characteristics (segmentation) and particle ID (PSD) become important
- PROSPECT, MiniChandler → First successful aboveground experiments
- Other significant experiments in the field SOLID, STEREO also rely on segmentation

PROSPECT detector

Physical Review Letters 131, 021802 (2023)

<u>MiniCHANDLER</u>

Physical Review Applied 13, 034028 (2020)

6 Gd-loaded liquid

scintillator target cells

Outer crown unloaded

liquid scintillator

Physical Review D 102, 052002 (2020)

Lawrence Livermore National Laboratory

Interaction Types

IBD:

- Up until now, simple inverse beta decay (IBD) has dominated the antineutrino detection field.
- $\overline{\nu_e}$ + p $\rightarrow e^+$ + n

But there are other options. As technologies continue to improve, ES and CEvNS may become more relevant

Electron Scattering: $\bar{\nu_e} + e^- \rightarrow \bar{\nu_e} + e^-$

 The interaction of choice for low energy solar neutrino detection at Super-K, allows access to antineutrino direction

CEvNS: $\overline{\nu_e}$ + N $\rightarrow \overline{\nu_e}$ + N

Increases the interaction cross-section by ~100x relative to IBD. But observable – low E nucleus

Needed capabilities?

In recent years, enormous progress has been made producing detectors capable of aboveground deployment. What is still missing now?

Needed capabilities?

For nonproliferation:

- we still don't have (quite) a stand alone detector that can be parked next to a reactor for monitoring purposes watch this space ☺
- We've seen above ground detection at ~10-20m. Sensitivity to lower fluxes?
- Better particle ID for aboveground and shallow deployments
- Directionality?

For science:

- We are very close to having a relic supernova detector <u>– Super-K</u>
- Geoneutrino and mass hierarchy sensitivity breakthroughs <u>JUNO</u>
- Better particle ID in beam experiments
- Directionality

In this talk I will go over some of the more relevant near-future technologies likely to get us closer to some of these capabilities

Where to from here?

New materials – ⁶Li-doped PSD plastic scintillator

Invented 2013

<u>Zaitseva et al. NIMA – V729, P747 (2013)</u>

- Multi-liter volumes are now available from Eljen Technologies (EJ-299-50)
- Key ingredients scintillating monomer (styrene or vinyl toluene), ~30% PPO (primary dye, provides PSD), secondary dye
- ⁶Li salt dissolved within an organic comonomer – methacrylic acid.
- Cross-linker to strengthen polymerization

Strict temperature Control and heat Dissipation requirements

⁶Li-doped PSD plastic scintillator - performance

- Light output ~65% of EJ 200 (a non PSD standard) ٠ ~6000 Photons/MeV
- Attenuation lengths ~90 cm ٠
- Shown is typical attenuation and PSD performance • from a 6cm x 6cm x 100cm bar
- 2-inch PMTs at both ends ٠
- Bar wrapped with mirror-like material ٠
- Collimated gamma-ray source •

See talk by Cristian Roca

Average

⁶Li-doped PSD plastic scintillator – long term performance

Yellowing update:

- Earlier iterations of PSD plastic scintillator have shown a tendency to interact with oxygen causing yellowing, and reduced light output
- e.g. EJ-276, EJ-299-33
- If you have bought one of these you know....
- The new version (EJ-299-50) performs much better
- Over ~1 year time-scales no yellowing observed
- Within EJ-299-50 we are testing further improvements

Scintillator sweating/outgassing:

- 30% PPO doesn't polymerize. It slowly diffuses out of the plastic into the air
- If trapped near scintillator PPO crystals can form
- Crystals can interfere with light propagation along a bar
- Degradation ~6-9 months timescale
- Crystal formation can be defeated by bonding a layer of plastic on the scintillator

See talk by Cristian Roca

■ Initial LO ■ 10 days at 60C/air ■ 3 weeks RT/air ■ 4 weeks RT/air ■ 17 weeks ■ 19 week

LO: 60C in N2 treatment –Then stored at RT in air

■ Initial LO ■ 3 weeks in N2 ■ 6 weeks in N2 ■ 8 days 60C/N2 ■ 17 weeks ■ 19 weeks

Effect of ageing on light output in air:

- 4 variants tested. 3 with antioxidants added, 1 "hardened" variant.
- Antioxidants degrade less in ageing tests
- Antioxidant+hardener shows little if any ageing effect

Effect of ageing on light output in nitrogen:

• Same variants show little if any ageing under nitrogen

New materials – ⁶Li-doped PSD liquid scintillator

Motivation:

- Previous ⁶Li-doped PSD liquid scintillators (e.g. PROSPECT) relied upon dissolving ⁶Li salt in water, then mixed throughout liquid scintillator via an emulsion
- Work associated with dissolving ⁶Li in organic compounds directly (with no need for emulsions) grew out of the plastic scintillator work which provided capability to directly dissolved in scintillator

Light output, PSD and attenuation Tests:

- Acrylic test cells same dimensions as ROADSTR scint. bars 5.5cm x 5.5cm x 50cm
- Cells wrapped with specular reflective wrapping
- Tests directly comparable to PSD plastic tests
- 2-inch PMTs mounted at both ends of each cell.
- ⁶Li organic compounds appear to not negatively impact scintillator light output

Note: ⁶Li-doped PSD liquid scintillator is actively being evaluated as a possible fill for PROSPECT 2

See talk by Tomi Akindele

Opaque scintillating materials

LiquidO Concept:

- Liquid scintillator with very long absorption length, and very short scattering length combined with wavelength shifting fibers to extract light from the medium
- In principle, enhanced event reconstruction (3D imaging)

Outstanding questions:

- Energy resolution? drivers will be photo-statistics + distance to fiber
- How to handle proliferation of channels

Plans for the future:

- Larger prototypes
- Optimization of liquid (scattering length, minimizing absorption)

Long term plan:

SuperChooz (~10 kton, ~1km from Chooz reactors)

(a): 2D representation

(b): 3D representation

<u>1 MeV e+:</u>

(c): reconstruction (5mm scattering length)(d): transparent scintillator

See Nature Communication Physics, 4, Article number 273 (2021)

WbLS

Invented by Minfang Yeh at BNL NIMA, V660, issue 1, (2011), P51

Concept:

- Emulsion of organic scintillator shielded from water inside micelle structures
- Fraction of scintillator to water can be tuned for your application (anywhere from 1% to 10s%)
- Particle ID via Cherenkov/scintillation separation
- Dopants such as gadolinium can be added to the water

Proposed experiments:

- 400L Deployed in ANNIE
- Proposed for WATCHMAN, EOS, BUTTON and Theia

<u>R&D:</u>

Continuous purification of water needed for long term deployment

WbLS – PSD and potential for organic doping

Concept:

- Increased organic fraction (10s%)
- PSD sensitivity
- ⁶Li doping can be added to the organic component rather than the water

<u>R&D:</u>

- Early stage currently testing whole parameter space for concentrations of surfactant/scintillator/water that result in clear liquid
- R&D to scale up production commences in 2024

Purification:

• The use of pure DI water may have implications for purification (good? Bad?, R&D question)

T. Akindele, M. Ford, N. Zaitseva

Long term material performance of new materials

WbLS:

- Bacteria multiplies just great in water. So all water-based materials must be continually purified to maintain clarity
- Water is a great solvent dissolves your detector! so it must be continually purified to remove ions
- R&D to separate water/organics on a large scale continues at UC Davis and BNL

WbLS (PSD):

• Undoped water may help purification process? Not sure.

⁶Li-doped PSD plastic:

- Oxygen induced yellowing which plagued earlier iterations appears to be small/manageable now
- PPO outgassing/sweating appears manageable over ~1 year timescale. Testing mitigations for MAD

⁶Li-doped PSD liquid:

• Long term stability and materials compatibility may be improved relative to PROSPECT. Needs further testing to confirm

Scaling

To set the scale:

 Water Cherenkov and Gd-H2O – up to 50-260 kton (Super-K and Hyper-K)

New scintillators:

- ⁶Li-doped PSD plastic 1-5 liters per item
- ⁶Li-doped PSD liquid scintillator R&D questions being addressed now
- WbLS currently being scaled to ~30 tons. Scaling to kilotons depends on purification R&D (UC Davis and BNL)
- PSD WbLS purification R&D needed

Diameter 68m Access Tunnel Water Depth 71m Plug Manhole

260 kton Hyper-Kamiokande detector

Mobile, above-ground deployments

- Nonproliferation and reactor operator communities have identified use-cases for neutrino detectors, as summarized in NuTools (called for aboveground and mobile capability)
- Plastic materials are ideal for mobile applications
- PROSPECT and MiniChandler have shown that PSD and segmentation help reduce cosmogenic neutron backgrounds by
 - Identifying pulse shape and topological characteristics of signal and background
 - providing accurate position reconstruction distance cuts, fiducialization
 - Enhances efficient photon detection

MAD will be a hybrid (2D + 3D) detector

Mobile Antineutrino Demonstrator

> See talk by Nathaniel Bowden

3D does better at topological event characterization. 2D incorporates PSD for fast neutron rejection

3D Segmentation

The goal of 3D topology selection is to identify patterns that are consistent with the Compton scattering of the back-to-back, electron-positron annihilation gammas

Photodetection – LAPPDs

available from Incom (https://incomusa.com/lappd/)

Concept:

• Position sensitive photon detector with 10s ps timing resolution over 20cm x 20cm area

Why is development slow?:

- Readouts are taking a while to catch up to the capabilities that LAPPDs provide
- Need to digitize signal at the LAPPD, not at a distant rack of digitizers
- Speed, # channels, heat dissipation

Solutions:

- ANNIE has been testing a prototype
- BUTTON will be soon

ANNIE https://annie.fnal.gov/

BUTTON IOP HEPP & APP Conference, 3rd April 2023

Photodetection – large area SiPMs

Concept:

- Packed 2D array of microcells each a single photon avalanche photodiode (SPAD)
- >~100k SPADs/pixel
- High photon detection efficiency
- Manufacturable with CMOS technology at standard Silicon mass production technology facilities

Limitations:

- High dark rates limit use for single PE detection over large areas
- SiPM technology is well ahead of readout hardware lack of readout boards that can digitize a whole 64 channel SiPM is a problem. But this problem on the way to being solved

Solutions?:

- Digital SiPMs enable a digital readout of each and every SPAD hit
- Solves the readout board problem by digitizing on the SiPM itself
- ~90% dark noise is produced by ~10% of the SPADs (noisy ones can be identified digitally)

Other options - $\overline{v_e}$ Electron scattering

Pros:

- Directional
- purification to the required level is possible in principle with today's technology. There is low hanging fruit for further improvement

<u>Cons:</u>

- Requires purification to better than (SNO) 10⁻¹⁴ g/g U/Th, or (SNO+ water phase) 10⁻¹⁵ g/g U/Th
- Antineutrino cross section and pointing not quite as good as for solar neutrinos. Reactor spectrum softer than solar spectrum

At 13km baseline (Perry reactor/WATCHMAN distance)

NIMA, Volume 841, (2017), P130

Other options – Coherent elastic neutrino/nucleus scattering (CEvNS)

Various technologies are on the table:

- <u>Scintillator crystals</u> COHERENT (CsI(Na)), NEON (NaI(Tl)), (CaWO₄), PALEOCCENE (crystal defects)
- <u>High purity germanium detectors</u> CONUS(+), Dresden, nuGEN , TEXONO
- <u>Noble liquids</u> LUXE (xenon), CHILLAX (xenon doped argon)
- Low-noise fully depleted CCDs CONNIE
- <u>Bolometers</u> Ricochet

Reactor CENNS Threshold Energy (keVr)

Coherent result (2017):

- First observation of coherent scattering
- Source the SNS neutrino beam
 - Neutrino energies are much higher than for reactor neutrinos
- Single 14.6 kg CsI(Na) crystal
- Sensitive down to a few keV nucleus recoil energy few photoelectrons
- Probably can't reach reactor antineutrino energies (100s eV)

See Science, V357, Issue 6356, P1123, (2017)

CEvNS

CHILLAX (noble liquids):

- The approach is to combine argon and xenon
 - advantageous energy transfer provided by scattering on argon
 - Better scintillation of xenon
- Handling xenon in the gas phase is non trivial

See Jingke Xu Neutrino seminar, Fermilab, April 7th, 2022

CONUS(+) vGEN (Germanium):

- Best prospect of low enough energy threshold (~200 eV)
- Scalability beyond ~few kg?

My brief (ill-informed) Take aways on CEvNS future:

- Germanium low threshold detectors may get to reactor detection first but difficult to scale
- Noble liquids look promising long term easier to scale

Summary

Near future technologies to look forward to:

- Mobile above ground reactor antineutrino detection
- Stable ⁶Li-doped PSD plastic scintillator
- Stable ⁶Li-doped PSD liquid scintillator
- Position sensitive photon detection via LAPPDs and Low(er) dark rate SiPMs (via digital SiPMs)
- If the challenges of purifying WbLS are overcome
 - Large water-based Cherenkov-scintillator detectors

One day?:

- Reactor directionality via electron scattering and Cherenkov
- Reactor antineutrino coherent scattering
- Vast tiled walls of photon detectors with fast timing and ~cm position resolution

Backups

IBD - other isotopes

On argon_40, threshold is 7.5 MeV \rightarrow not for reactors, can be considered for supernova detection

Argon_38 threshold 4.9 MeV \rightarrow possible

He_3 threshold 18.6 keV \rightarrow yes

Na_23 threshold 4.4 MeV \rightarrow possible

O_16 threshold 10.4 MeV \rightarrow No

C_12 threshold 13.4 MeV \rightarrow No

Cs_133 threshold 0.4 MeV \rightarrow Yes

2D Segmentation

Purification

Photodetection - PMTs

Location:

The Chooz A reactor cavern. ~ 1km from Chooz reactors

Application, Depth, Location

