Antineutrino applications: Highlights from 46+ years of ideas

Rachel Carr, United States Naval Academy with contributions from Tomi Akindele, Lawrence Livermore National Laboratory

Applied Antineutrino Physics Workshop – September 2023 – York, UK

Cooperative reactor monitoring for NPT & regional agreements

> Submarine tracking & core verification

Long-range reactor discovery & surveillance

> Spent fuel & reprocessing waste analysis

Nuclear explosion monitoring

Communications

Cooperative reactor monitoring for NPT & regional agreements

Submarine tracking & core verification

Long-range reactor discovery & surveillance

> Spent fuel & reprocessing waste analysis

Nuclear explosion monitoring

Communications

"A Message Through Earth, Not Around It, Hinted Soon"

M. W. Browne New York Times Oct. 28, 1977

... the first human message to be sent directly through the earth rather than around it could be transmitted along a **beam of neutrino particles** as early as next year. The test transmission could **revolutionize communications** as profoundly... as did the first experiments in wireless telegraphy performed by Guglielmo Marconi in the 1890s.

"Neutrino communication arrangement"

US Patent 4205268

- **1977-01-31** Application filed by Eerkens Jozef W
- **1977-01-31** Priority to US05/764,292
- **1980-05-27** Application granted
- 1980-05-27 Publication of US4205268A
- 1997-05-27 Anticipated expiration
- Status Expired Lifetime

"Galactic Neutrino Communication"

J. Learned et al. Phys. Lett. B 671 (2009)

We have outlined a method for **intragalactic communication via directed 6.3 PeV beams of electron antineutrinos**, and other neutrinos. Such beams can be created with reasonable energy efficiency by a civilization **without a long stretch from the technology we now possess**...

"Submarine neutrino communication"

P. Huber Phys. Lett. B 692 (2010)

MIT Technology Review

How Neutrinos Could Revolutionize Communications with Submarines

Sending messages using neutrinos could improve data rates by up to three				
orders of magnitude.				
By Emerging Technology from the arXiv	October 5, 2009			

"Demonstration of Communication Using Neutrinos"

D. D. Stancil et al. Mod. Phys. Lett. A 27 (2012)

\equiv **physics**world \triangleleft

P | particles and interactions

f y

in

- PARTICLES AND INTERACTIONS | RESEARCH UPDATE
- Neutrino-based communication is a first

Not-so-portable neutrino receiver

"Neutrinos to Give High-Frequency Traders the Millisecond Edge"

B. Dorminey Forbes Apr. 30, 2012

Communication times between financial centers

	Distance Earth Surface	Distance Through Earth	Time Surface Fiber optics	Time Surface Air	Time Through Earth	Time saved Through Earth versus Fiber	Time saved Through Earth versus Air
New York London	3,465	3,337	28.2	18.6	17.9	10.3	0.7
New York Tokyo	6,749	5,817	54.9	36.3	31.2	23.7	5.0
London Tokyo	5,946	5,394	48.4	31.9	29.0	19.4	3.0
New York Hong Kong	8,054	6,630	65.5	43.3	35.6	29.9	7.7
London Hong Kong	5,979	5,423	48.6	32.1	29.1	19.5	3.0
London Sydney	10,572	7,691	86.0	56.8	41.3	44.7	15.5
New York Sydney	10,377	7,487	84.4	55.7	40.2	44.2	15.5

Distances in miles, time in milliseconds, calculations by professor Espen Gaarder Haug

Optical fiber assumed 66% speed of light. Neutrino speed assumed approximately speed of light.

Neutrino communications concept has:

- Investment from defense/national security agencies
- Articulation of specific use cases & customers
- Advantages over existing technology
- Scientific publications & patents
- Demonstration of technology
- Media attention

Neutrino communications concept has:

- Investment from defense/national security agencies
- Articulation of specific use cases & customers
- Advantages over existing technology
- Scientific publications & patents
- Demonstration of technology
- Media attention

Not yet in use. What else is needed?

Cooperative reactor monitoring for NPT & regional agreements

> Submarine tracking & core verification

Long-range reactor discovery & surveillance

> Spent fuel & reprocessing waste analysis

Nuclear explosion monitoring

Communications

Cooperative reactor monitoring for NPT & regional agreements

Submarine tracking & core verification

Long-range reactor discovery & surveillance

> Spent fuel & reprocessing waste analysis

Nuclear explosion monitoring

Communications

LINCLASSIFIED

	REPORT DOCU	MENTATION	PAGE			
18 REPORT SECURITY CLASSIFICATION	16 RESTRICTIVE	MARKINGS				
UNCLASSIFIED						
28 SECURITY CLASSIFICATION AUTHORITY N/A SINCE UNCLASSIFIED			3 DISTRIBUTION / AVAILABILITY OF REPORT			
2b. DECLASSIFICATION / DOWNGRADING SCI	EDULE	Approved for public release; distribution				
N/A SINCE UNCLASSIFIED		is unlimited.				
4 PERFORMING ORGANIZATION REPORT NU	IMBER(S)	5 MONITORING	ORGANIZATION R	EPORT NUM	MBER(S)	
JSR-84-105		Defense Advanced Research Projects Agency				
Se NAME OF PERFORMING ORGANIZATION The MITRE Corporation (H applicable)			NIZATION			
JASON Program Office		Defense Advanced Research Projects Agency				
6c. ADDRESS (City, State, and ZIP Code)		76 ADDRESS (CA	y, State, and ZIP	Code)		
7525 Colshire Drive		1400 Will	son Boulevar	ď		
McLean, VA 22102			Arlington, VA 22209			
& NAME OF FUNDING / SPONSORING	Bb OFFICE SYMBOL	9 PROCUREMEN	T INSTRUMENT ID	ENTIFICATIO	ON NUMBER	
ORGANIZATION	(H applicable)	F19628-8				
Bc. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF	UNDING NUMBER	5		
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT	
11. TITLE (Include Sector Charles)		1	I			
11 TITLE (Include Security Classification)						
Neutrino Detection Primer						
12. PERSONAL AUTHOR(S)						
C. Callan, F. Dyson, S. Tre	iman ME COVERED					
Technical FROM	14 DATE OF REPO	RT (Year, Month, I	Day) 15 1	AGE COUNT		
16 SUPPLEMENTARY NOTATION		870623			90	
					[
17. COSATI CODES	18 SUBJECT TERMS		if peressan and	dentile b	black aug barl	
FIELD GROUP SUB-GROUP				Senary by	y block humber)	
					2 4 1	
19 ABSTRACT (Continue on reverse if neces						
This report is intende	d to provide for a	non-expert re	aders a sur	vey of a	natural and	
man-made neutrino sources a	nd a critical rev	iew of variou	is methods wi	hich ha	ve been pro-	
posed for their detection.	Detection methods	s may be divi	ded into tw	o class	es, those	
which have very modest perf spectacular performance but	violete the level	actually wor	k, and those	e which	promise	
the second class of methode	The nurnose is	or physics.	ibo in dota	n this i	report is on	
the second class of methods. The purpose is not to describe in detail what is possible, but to establish firm limits beyond which all schemes for detection capability are						
impossible. The last two sections of the report are for advanced students only and						
should be skipped by the non-expert. They provide precise mathematical statements and						
proofs of the limits which the laws of physics impose upon neutrino cross-sections. The						
limits are neither simple nor obvious. Consequently, it may be useful to have their						
technical justification here put on record.						
10 DITE: 0						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIEDAUNLIMITED SAME AS RPT. DTIC USERS INCLASSIFIET						
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL						
		TELEPHONE (RIUGE Area (ode)	ZZC. OFFI	CE SYMBOL	
DD FORM 1473, 84 MAR 8	3 APR edition may be used un	ntil exhausted.	SECURITY C	LASSIFICAT	ION OF THIS PAGE	

All other editions are obsolete

UNCLASSIFIED

"Neutrino detection primer"

C. Callan, F. Dyson, S. Treiman JASON advisory group, 1988

"Neutrino detection primer"

C. Callan, F. Dyson, S. Treiman JASON advisory group, 1988

For imagined applications of the above sorts, neutrinos have the **great advantage that they interact weakly with matter**, so can easily pass through vast thicknesses of matter without absorption or deflection. For imagined applications of the above sorts, neutrinos have the **great disadvantage that they interact weakly with matter**, hence do not register easily in neutrino detectors.

Tracking Nuclear Material Aboard Submarines

June 14, 2022 • Physics 15, s79

Monitoring the fissile material aboard nuclear-powered submarines is notoriously difficult. Researchers may now have a way to safeguard this weapons-grade substance.

"Cerium Ruthenium Low-Energy Antineutrino Measurements for Safeguarding Military Naval Reactors"

B. Cogswell & P. Huber Phys. Rev. Lett. 128 (2022)

Grispb/stock.adobe.com

Cooperative reactor monitoring for NPT & regional agreements

> Submarine tracking & core verification

Long-range reactor discovery & surveillance

> Spent fuel & reprocessing waste analysis

Nuclear explosion monitoring

Communications

"Possibilities of the practical use of neutrinos"

A. A. Borovoi & L. A. Mikaelyan Soviet Atomic Energy 44 (1978)

50 years of NPT Comprehensive Safeguards Agreements – The Legal Bedrock of Nuclear Verification

05 Apr 2022 Jennifer Wagman

"A Message Through Earth, Not Around It, Hinted Soon"

M. W. Browne New York Times Oct. 28, 1977

... the first human message to be sent directly through the earth rather than around it could be transmitted along a beam of neutrino particles as early as next year. The test transmission could revolutionize communications **as profoundly... as did the first experiments in wireless telegraphy** performed by Guglielmo Marconi in the 1890s.

Cooperative reactor monitoring for NPT & regional agreements

> Submarine tracking & core verification

Long-range reactor discovery & surveillance

> Spent fuel & reprocessing waste analysis

Nuclear explosion monitoring

Communications

Additional references

"Navigation system based on neutrino detection"

US Patent 8849565B1

- 2007-06-28 Application filed by Boeing Co
- 2007-06-28 Priority to US11/770,652
- 2007-06-28 Assigned to THE BOEING COMPANY ③
- 2009-09-10 Publication of US20090228210A1
- 2011-03-22 Priority to US13/069,240
- Status Abandoned

"Neutrino-based tools for nuclear verification and diplomacy in North Korea"

R. Carr et al. Science & Global Security 27 (2019)

Neutrino physics for Korean diplomacy

RACHEL CARR , JONATHON COLEMAN, GIORGIO GRATTA, KARSTEN HEEGER, PATRICK HUBER, YUENKEUNG HOR, TAKEO KAWASAKI, SOO-BONG KIM, YEONGDUK KIM, JOHN LEARNED, MANFRED LINDNER, KYOHEI NAKAJIMA, SEON-HEE SEO, FUMIHIKO SUEKANE, ANTONIN VACHERET, WEI WANG, AND LIANG ZHAN fewer Authors Info & Affiliations