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Formulation of the problem

• In the past, claims have been made that reactors are detectable at 
very large distances using their antineutrino radiation. The question is 
if we include an accurate understanding of detector efficiencies and 
backgrounds, how scalable is this method?

• Detection technology: Gd-doped water-Cherenkov detector

The actual question addressed in the paper:
• If we have an X-kt detector, what is the maximum range to detect a 

50-MWt reactor in 1 year?
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Neutrino oscillations make it more challenging to 
detect antineutrinos in the far-field
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World reactors
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Circles of different color indicate reactor types.

We consider three distinct levels of world-reactor backgrounds (low, medium, and high)
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World as seen in reactor antineutrinos

A. Barna and S. Dye, 
arXiv:1510.05633 

S. M. Usman et al.,
Sci. Rep. 5, 13945 (2015)
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Realistic detector performance
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The fiducial volume boundary is defined as 4 meters from the 
outer tank, or 2 meters from the PMTs.

40% photo-coverage.



Water-Cherenkov detectors are counters with 
limited energy resolution
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“n9” is a technical term for the number of the PMT hits due to 
Cherenkov cone photons. All scattered or reflected photons 
are removed by employing a tight 9-nanosecond cut.

We can’t resolve the “wiggles” in the spectrum 
using the water-Cherenkov detector (not enough 
photons to have a good energy resolution).8
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Backgrounds

• Accidental backgrounds due to radioactivity of detector components
• Cosmogenic backgrounds due to muons
• Radiopurity levels used in this study:
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Medium U-238 Th-232 K-40 Rn-222

Water (Bq/kg) 1e-6 1e-7 4e-6 1e-6

PMT (Bq/tube) 2.45e3 2.49e3 5.85e-1 —



Depth

In this study, we assumed the same depth for all detector, causing the same flux 
of cosmogenics — scaled from the WATCHMAN detector.
Two types of cosmogenic backgrounds that mimic IBD:

• 9Li and 8He long-lived isotopes
• Two correlated neutrons that penetrate to the inner volume of the detector from the rock

cosmogenic muon going 
through the surrounding rock

neutron 2

neutron 1
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He-8
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Li-7
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Positron and neutron detection efficiency
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Problem of PMT dark rate and misreconstruction
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Example: 208Tl in PMTs, 50x50.



Dwell time to detect a 50-MWt reactor
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We solve this equation to find dwell time:

where ND is the minimum number of counts 
from the source (antineutrinos from a 50-MWt 
reactor) required to ensure reliable detection 
in the presence of background, and NB is the 
total background, including world reactors, 
uncorrelated detector backgrounds, 
cosmogenic fast neutrons, atmospheric 
neutrino interactions with oxygen, diffuse 
supernova antineutrinos, and geological 
antineutrinos. 

13



Conclusion: Range to detect a 50-MWt reactor
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For locations with a high world 
reactor background, the task of 
detecting a small 50-MWt reactor 
at a large distance depends 
primarily on the world reactor 
background at that location. This 
is the primary reason why the 
estimated range levels off as a 
function of detector size.
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Notable publications on the subject since last AAP

• arXiv:2204.08618 — this study
• arXiv:2210.09391 — Exclusion and Verification of Remote Nuclear 

Reactors with a 1-Kiloton Gd-Doped Water Detector
• arXiv:2210.11224 — Sensitivity of an antineutrino monitor for remote 

nuclear reactor discovery 
• arXiv:2008.13266 — Measurement of Muon-induced High-energy 

Neutrons from Rock in an Underground Gd-doped Water Detector 
• arXiv:2305.05135 — Search for astrophysical electron antineutrinos in 

Super-Kamiokande with 0.01wt% gadolinium-loaded water 
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https://arxiv.org/abs/2204.08618
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https://arxiv.org/abs/2210.11224
https://arxiv.org/abs/2008.13266
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Backup slides
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Backup: number of events

One can use this table/study to find dwell times for other reactor power (not 50 MWt) and various stand-off distances.
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Cosmogenic neutron rates as function of depth

D.-M. Mei and A. Hime
Phys. Rev. D 73, 053004

The detectors considered in this study are 
assumed to be placed at a depth roughly 
consistent with the proposed depth of the 
WATCHMAN experiment in the Boulby mine 
(approximately 2.8 km water equivalent). At 
this depth, and assuming that the detector 
fiducial volumes are protected by 4 m of veto 
and a PMT buffer as described above, 
cosmogenic fast-neutron backgrounds are 
expected to be subdominant. 
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Geoneutrinos are also included
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How antineutrinos are detected (in this study)

PMTs register Cherenkov light.

ν  +  1H   ⇨ e+  +  n

Positron, carries most of the antineutrino energy, 
travels a few centimeters before e+e-àγγ annihilation.

Cherenkov 
photons are 
emitted at 
θ<42˚ angle to 
the positron 
track (~cm).

γ

γCompton-scattered electrons
from 511-keV gamma-rays 
generally don’t produce enough 
Cherenkov radiation (260-keV 
threshold). A different story in the 
scintillator.

A keV neutron thermalizes — travels 10s of centimeters 
or O(10–100 µs) before capturing on gadolinium or 
hydrogen. The former produces a few gamma-rays (~8 
MeV of total energy) which in turn produce Compton 
electrons with sufficient energy to generate Cherenkov 
radiation.

γ

γ
γ

Gd

e-

Cherenkov photons 
are in the visible range 
(blue) registered by 
photomultiplier tubes 
(PMTs).

Photoelectron — electron ejected from 
photocathode

PE

Electron multiplication:
a single electron becomes ~106 electrons,

a macroscopic current possible to measure. 
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cos θ = (nβ)-1 θ



Backup: 
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Process (singles rate; 2-m fraction)
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Total (45.438 Hz; 0.00284)

12 15 18 21 24 27 30 33
n9 Cut (hits)

10°1

100

101

D
w

el
l
T

im
e

(o
n
ly

ac
ci

d
en

ta
ls

)
(d

ay
s) Geometry:

15£15

20£20

30£30

40£40

50£50

12 15 18 21 24 27 30
n9 Cut (hits)

10°4

10°3

10°2

10°1

2-
m

F
ra

ct
io

n

Geometry:

15£15

20£20

30£30

40£40

50£50

Linear Fit (slope, y-int)
-1.12E-03, 8.92E-02

-1.00E-04, 2.12E-02

2.38E-06, 3.45E-03

-1.02E-04, 3.31E-03

-7.46E-04, 1.83E-02

Linear Fit (slope, y-int)
-1.12E-03, 8.92E-02

-1.00E-04, 2.12E-02

2.38E-06, 3.45E-03

-1.02E-04, 3.31E-03

-7.46E-04, 1.83E-02

21


