

NUCLEAR SAFEGUARDS: MONITORING OF SPENT NUCLEAR FUEL

Yan-Jie Schnellbach¹, Thomas Radermacher¹, Irmgard Niemeyer², Stefan Roth¹, and Malte Göttsche¹ ¹RWTH Aachen, ²FZ Jülich

schnellbach@nvd.rwth-aachen.de

Applied Antineutrino Physics Workshop 2023 | York, UK | 18th September 2023

- Spent Nuclear Fuel (SNF) produced by reactors
 Total global SNF: ~300,000 t HM* + ~7,000 t HM annually
- Discharged SNF after refuelling goes to:
 - Spent fuel ponds (several years)
 - Interim storage facilities (several decades) or reprocessing
 - Ultimately: geological repository (none yet – Onkalo starting '25, ~100 years operation)
- Even without operating reactors:
 - Decades to centuries of actively managing SNF

Fuel assembly containing SNF being loaded into a cask https://www.gns.de/language=de/21562/behaelterbeladung

- SNF requires safeguards:
 - Mostly ²³⁸U (93-96%), but also: <1% ²³⁵U, ~1% Pu
 - \rightarrow interim storage & final disposal subject to safeguards
- Current safeguards often rely on Continuity of Knowledge (CoK)
 - Nuclear material accountancy
 - Containment/Surveillance (C/S)
 - Design information verification (DIV)
- Declarations verified by regular inspections
 - \rightarrow Operational/radiological burden on facility operators/staff
 - \rightarrow Interested in methods to fulfil obligations with less intrusion

Material	In SNF
²³⁸ U	93-96%
²³⁵ U	<1%
Fission fragments (e.g. ⁹⁰ Sr)	3-5%
Pu	~1%
Minor actinides	<1%

ZWILAG Zwischenlager Würenlingen AG

Ongoing Safeguards R&D for SNF Facilities

- Re-establishing CoK ("re-verification") in case of discrepancies or incident requires huge effort & time
 → Better techniques for re-verification desired!
- Safeguards R&D aims
 - Lessening operational burden (automated/continuous/remote systems)
 - Complement existing methods
- Under development for interim storage facilities
 - Improved C/S techniques (e.g. "laser curtains")
 - Muon tomography of casks (measuring content density)
- Under development for geological repositories
 - Muon tomography for design information verification

V. Sequeira et al., "Laser Curtain for Containment and Tracking". Proceedings of the INMM & ESARDA Meeting 2021.

D. Ancius et al., "Muon tomography for dual purpose casks (MUTOMCA) project". Proceedings of the INMM & ESARDA Meeting 2021.

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Antineutrino Detection as SNF Safeguards Tool

- Antineutrino monitoring concept has been proposed and investigated by V. Brdar, P. Huber and J. Kopp in 2017
- Transfer reactor safeguards concepts to SNF
 - Fission fragments in SNF continue to beta-decay for decades/centuries
 - Lower **energy**, lower **flux** than reactors
 - Main detectable isotope for IBD: ⁹⁰Sr/⁹⁰Y
- Complementary to other SNF safeguards R&D concepts
- Investigating several candidate technologies (IBD-based)
 - LAB, PVT scintillators + TMS time-projection chambers
 - Investigate several storage scenarios

Detector Technology Comparison

- Applied antineutrino detection: active R&D in past two decades
 - Focussed on reactor antineutrinos
 - No "best" technology: ongoing R&D + use case-dependent
- Main technologies
 - Scintillators (liquid, crystal, plastic)
 - Cherenkov tanks
 - Radiochemical
 - Time projection chambers (TPCs)
- For ideal detector:
 - Good scaling (small/large, flexible geometries)
 - Localised information (segmentation/good reconstruction)
 - Sensitivity near IBD threshold (1.8 MeV)
 - Continuous, autonomous readout
 - Final state reconstruction (particle ID: e⁺ vs e⁻)
 - Antineutrino direction

6

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

PROSPECT (liquid scintillator-based)

Nucl. Instrum. Meth. A 922 (2019), pg. 287

MiniCHANDLER (plastic scintillator-based) http://cnp.phys.vt.edu/chandler/

Example Medium	Density [g/cm3]	H atoms /cm3
LAB (liquid scintillator)	0.86	7.5 x 10 ²²
PVT (plastic scintillator)	1.10	4.5 x 10 ²²

Liquid Organic Drift Media for Time Projection Chambers (TPCs)

- TPCs provide good reconstruction of particle positions and/or trajectories
 - \rightarrow additional information for particle ID and directionality
 - \rightarrow previous work looked at LAr-TPCs
- Current approach: Liquid Organic TPC (LOr-TPC)
- "New" medium under investigation
 - Tetramethylsilane (TMS): Si(CH₃)₄
 - Contains hydrogen for IBD: 5.3 x 10²² H atoms per cm³
 - Basic feasibility investigated by S. Wu et al. at Stanford
 - However: drift over larger distances challenging and unproven
- GEANT4 simulation of SNF antineutrinos:
 - Positron track, annihilation photons and neutron capture
 - Majority of events: can reconstruct original $\overline{\upsilon}_{e}$ direction with <10° deviation

Half-filled cell showing wire chamber through viewport

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Antineutrino Flux Modelling: Understanding the SNF Signal

- ONIX: simulate fuel assemblies
 Example: GKN II fuel assembly at 54 MWd/kg burn-up
- Tally isotopic contents after burn-up

- Select main contributing isotopes (high $\overline{\upsilon}_e$ energy + long half-lives)
- NDS ENDSF database/BetaShape for beta & $\overline{\upsilon}_e$ energy spectra
- Convolve with IBD cross-section
- Determine interaction rate per ton of SNF
- Repeat for different SNF ages

Example Geological Repository: Layout & Interaction Rates

y [m]

- Modelling sensitivity of idealised 80m³ detectors (no background)
 – Eight locations: 50m above casks
- Simplified geological repository
 - 1,120 canisters x 10 fuel assemblies
 - Uniform age for all canisters (50, 100 or 200 years)
- Modelled diversion of 1.25% of content (14 canisters: ~78.4t HM)
- Three detection media compared all similar overall performance
 Use TMS as example medium

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

g

III. Physikalische

Example Geological Repository: Expected Sensitivity

Criterion for detection: 90+% CL that diversion occurred

- Time t_{CL90} to reach 90% CL for all scenarios for removed group
 - Scenario 1 (50 years): \tilde{t}_{CL90} (median) = 8.6 months (5.0-12.5 months), 90% quantile = 11.5 months
 - Scenario 2 (100 years): \tilde{t}_{CL90} (median) = 14.2 months (10.6-17.3 months), 90% quantile = 16.7 months
 - Scenario 3 (200 years): \tilde{t}_{CL90} (median) = 20.6 months (19.4-21.8 months), 90% quantile = 21.6 months

Example Interim Storage Facility: Layout & Interaction Rates

y [m]

- Modelling sensitivity of idealised 80m³ detectors (no background)
 – Four locations:
 - 10m distance from casks
 - One side (left) service building/access
 - Iterative optimisation of locations
- Simplified interim storage
 - 130 fuel casks x 19 fuel assemblies
 - SNF stored 20-60 years ago
- Modelled following scenarios:
 - Diversion of 1 cask (~10.6 t HM)
 - Diversion of ½ cask (~5.3 t HM)
 - Re-verification of 1 cask w/ directional capability

11

III. Physikalische

Institut B

Example Interim Storage Facility: Expected Sensitivity

Criterion for detection: 90+% CL that diversion occurred

- Time t_{CL90} to reach 90% CL for both scenarios for each cask location
 - Scenario 1 (1 cask): \tilde{t}_{CL90} (median) = 6.4 months (0.4-15.2 months), 90% quantile = 10.9 months
 - Scenario 2 ($\frac{1}{2}$ cask): \tilde{t}_{CL90} (median) = 10.3 months (0.6-28.4 months), 90% quantile = 18.1 months

III. Physikalische Institut B

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Example Interim Storage Facility: Re-verification with 30° Directional Capability

- Re-verification of single cask of interest: verify full or declare empty cask
 - Use Sequential Probability Ratio Test (SPRT) allow 10% false negatives, 20% false positives (can be tuned)
 - Assume 30° directional selection for incoming antineutrinos (angular resolution is technology dependent)
- Time t_{SPRT} to verify/reject a cask (30° selection cone)
 - Full Cask: \tilde{t}_{SPRT} (median) = 2.6 months (0.1-14.6 months), 90% quantile = 5.6 months
 - Empty Cask: \tilde{t}_{SPRT} (median) = 2.2 months (0.1-10.6 months), 90% quantile = 4.7 months

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Monitoring & Verification using CEvNS

- Proposal & study by C. von Raesford & P. Huber:
 - Coherent Elastic neutrino-Nucleus Scattering (CEvNS)
 - Exploit higher cross-section for smaller detector
- Example scenario investigated
 - 10 t HM of SNF
 - 10 kg detector mass
 - 3m stand-off distance
- Expectation for 1 year data collection
 - 100+ events

14

- Potential sensitivity: single fuel element removal with <10% error
- Results from reactor CEvNS experiments will determine feasibility

III. Physikalische

nstitut B

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Conclusions

- Antineutrino detection for safeguards
 - Reduce operational burden desirable by facilities
 - Complementary to density or n/y measurements (ongoing R&D)
 - Potential for re-verification to re-establish CoK
- Geological repositories
 - Long-term (100+ years) difficult limited by ⁹⁰Sr half-life
- Interim storage

15

- Newer SNF & lower stand-off distances: high signal rates
- General monitoring: < 1 year to detect removal
- Re-verification with directional detector: < 5 months required
- CEvNS also proposed as re-verification approach
 - Highly dependent on results of CEvNS research

Nuclear Verif and Disarma

- Sensitivity analysis of two model SNF storage sites
 - Ideal conditions: signal within few months
 - Statistical tests can be tuned to specific use cases
 - Directionality can speed up re-verification
- Ongoing project NU-SAFEGUARDS project investigates:
 - Embedding application for antineutrino monitoring in overall safeguards concepts & use cases
 - Technology comparison for low energy antineutrinos (close to IBD threshold)

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Thank you for your attention!

Funded by:

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

BACKUP SLIDES

- Antineutrino monitoring concept has been proposed and investigated by V. Brdar, P. Huber and J. Kopp in 2017
- Paper calculates antineutrino flux for all isotopes
 - ⁸⁸Kr dominates after a few hours
 - ⁹⁰Sr dominates after 10 years
- Does not make technological recommendations
 - But points out that current technology insufficient (except for detecting "cataclysmic" spills)
 - Recommends directional resolution O(10 degrees)

Brdar, V. and Huber, P. and Kopp, J., "Antineutrino Monitoring of Spent Nuclear Fuel", Phys. Rev. Applied, vol. 8, issue 5, pg 054050 (2017). DOI: https://doi.org/10.1103/PhysRevApplied.8.054050

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

19

Nuclear Ve and Disarr

Detection Principles: TPC

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

III. Physikalische Institut B

Preliminary IBD Simulation in LOr-TPC

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

22

Nuclear Verification and Disarmament

III. Physikalisches Institut B

Re-verification at Interim Storage Facility: Sequential Probability Ratio Testing

- Use for Re-verification:
 - Check of (individual) units for anomalies
 - Different tolerance for type I (false positive) and type II (false negative) errors
 - Complementary to other tools
- Sequential Probability Ratio Test (SPRT):
 - Either verify cask contents are correct or missing (this example: full or empty cask)
 - Optimal time to verification/rejection decision*
 - Choose: 20% type I errors, 10% type II errors
 - Note: error per cask, not for whole facility!
- For TMS (and certain scintillators): directional information available
 - For re-verification: focus on area-of-interest
 Selection cone of 30°

20

40

0

Correct Content

Missing Content

70

 \times

20 years 30 years

40 years 50 years

60 years

60

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Example Interim Storage Facility: Re-verification using SPRT

• Time t_{SPRT} to verify/reject a cask

24

- Correct Content: $\overline{t_{SPRT}}$ = 6.5 months (0.2-26.0 months)
- Missing Content: $\overline{t_{SPRT}}$ = 5.4 months (0.2-22.7 months)
- Time *t_{SPRT}* to verify/reject a cask (30°)
 - Correct Content : $\overline{t_{SPRT}}$ = 3.1 months (0.1-14.6 months)
 - Missing Content : $\overline{t_{SPRT}}$ = 2.5 months (0.1-10.6 months)

III. Physikalische Institut B

Nuclear Safeguards: Monitoring of Spent Nuclear Fuel Applied Antineutrino Physics 2023 | York, UK | 18th Sept 2023 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

TMS Prototype Developments

- Construction of small-scale prototype underway to investigate TMS properties
 - Test of purification system
 - Test of drift behaviour and readout with radioactive sources (γ- and *n*-emitters)
- Prototype simulation studies are done in parallel using GEANT4 + electron drift simulation
 - Characterise energy deposition by test sources within medium
 - Prototype measurements will allow improved modelling of drift behaviour
 - Will be used to predict TMS performance in largescale system (tonne-scale)

DN100CF Cube

