Reactor Antineutrino Flux Measurement

Bedřich Roskovec Charles University, Prague

Applied Antineutrino Physics Workshop The Guildhall York 19 September, 2023

Introduction

- Measurement of the reactor antineutrino fluxes (and spectra) is important
 - For fundamental physics: Oscillation parameters (θ_{12} , θ_{13} , Δm^2_{21} , Δm^2_{31}), sterile neutrinos? ullet
 - For applied physics: Benchmark our prediction models (or provide data-driven prediction) ullet
- Historically moving from:
 - \bullet
 - Total flux measurement } This +alk lsotopic flux measurement } \bullet
 - Isotopic spectrum (&flux) measurement } Talk by C. Roca lacksquare

Reactor Antineutrino Production

- Reactor antineutrinos produced in β decays of the neutron-rich fission daughter
 - Only electron antineutrinos \bullet
- Commercial reactors
 - Low-enriched uranium fuel (LEU) •
 - Fission of four main isotopes ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu \bullet
 - About 10^{21} v/s lacksquare
- Research reactors
 - Highly enriched fuel (HEU)
 - Fission of ²³⁵U only lacksquare
 - About 10¹⁹ v/s \bullet

Reactor Antineutrino Detection

- Primary detection method Inverse beta decay (IBD)
 - Used for almost 70 years now
 - Coincidence between prompt and delayed signal hugely suppress the background
- Reaction embedded how we report reactor antineutrino flux
 - So-called IBD yield (σ) number of antineutrinos per fission weighted by the IBD cross section

ntineutrino flux Itrinos per fissior

Temporal and spatial coincidence
prompt signal delayed signal

$$\nabla_e + p \rightarrow e^+ + n$$

 $\rightarrow n + H \rightarrow D + \gamma (2.22 \text{ MeV})$
 $\rightarrow n + Gd \rightarrow Gd^* \rightarrow Gd + \gamma$'s (8
 $\rightarrow n + Cd \rightarrow Cd^* \rightarrow Cd + \gamma$'s (9
 $\rightarrow n + Li \rightarrow Li \rightarrow \alpha + T (4.78/\sim$

Total Reactor Antineutrino Flux and RAA

- Historically, the most precise measurements of the total reactor antineutrino flux (four main isotopes) was done at commercial reactors (Bugey-4, Double Chooz, Daya Bay, ...)
- Phys. Rev. C 84, 024617 Deficit in the total measured flux w.r.t. the classical Huber+Mueller et al. (HM) prediction Phys. Rev. C 83, 054615 led to the so-called Reactor Antineutrino Anomaly (RAA) in 2011

- Might be explained by the existence of light sterile neutrino mixing $m_v \sim 1 \text{ eV}$
- Total flux measurement cannot not distinguish between sterile neutrinos and inaccurate prediction
 - More information from the measurement of fluxes by isotopes \bullet

Isotopic Flux Measurement at HEU Reactors

- Experiments such as STEREO, PROSPECT, SoLid
- Advantages
 - HEU reactors isotopic measurement per se, fuel only ²³⁵U
 - On-off reactor period •
 - Close to a reactor allows to explore ~1 eV sterile neutrinos •
- Challenges w.r.t. LEU reactor experiments
 - Lower statistics \bullet
 - Non-fission antineutrinos \bullet
 - More background from being closer to the surface ulletand reactor itself

The STEREO Experiment (as an Example)

- Segmented Gd-doped liquid scintillator experiment
- Located ~10 m from the 58 MW_{th} reactor at ILL
- Knowing the detection efficiency and background rates crucial to get your yield right
 - Energy calibration not so important for the flux measurement \bullet (depending on your selection cuts)
- Used techniques to measure and suppress the background
 - On-off reactor period ullet
 - Pulse shape discrimination \bullet
- Proper estimation of the (delayed IBD) neutron efficiency using an Am-Be neutron source
 - Still the largest systematics

- The most precise measurement from HEU reactors
 - Precision ~2.2% \bullet
- Measured yield lower than Huber + Mueller at al. model prediction
 - Deficit of 5.5% goes along with RAA lacksquare
- No sterile neutrino mixing signal observed (based on the spectrum measurement)

Hope to see PROSPECT here one day:)

STEREO Result

Fuel Evolution in LEU Reactors

to the fuel composition evolution

Constantly getting neutrinos from all four isotopes ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu - separation possible due

Rector Antineutrino Flux

9

Ν

0.25

239 Pu fission fraction

0.3

0.04

0.02

0.15

0.2

Isotopic Flux Measurement at LEU Reactors

- Experiments such as Daya Bay, RENO, NEOS, etc.
 - DYB&RENO primary purpose to measure θ_{13} ullet
- Advantages
 - High statistics permits the fuel evolution study \bullet
 - (Mostly) reasonable overburden ullet
- Challenges w.r.t. HEU reactor experiments
 - Antineutrinos from all four isotopes lacksquare
 - More than one reactor in the vicinity ullet
 - Usually no (full) on-off reactor period ullet

	Power [GW _{th}]	GdLS mass Near/Far [t]	Distance Near/Far [m]	Overburden [mwe]
Daya Bay	17.4	2×2×20 4×20	365, 490 1650	250 860
RENO	8.5	16 16	290 1380	120 450
NEOS	2.8	0.8	24	20

The Daya Bay Experiment (as an Example)

- Eight functionally identical three-zone liquid scintillator detectors
- Placed in water pools at three underground experimental halls
- Located ~350-1900 m from the six 2.9 GW_{th} reactors at Daya Bay and Ling Ao nuclear power plants
- Low-background experiment with B/S < 2%
- Precise determination of the (delayed IBD) a special campaign using an Am-Be and Am
 - Neutron efficiency improved lacksquare
 - Number of target protons ulletdominates the systematics

20 t of Gd-doped liquid scintillator

ents / 0.5MeV

Daya Bay Results

- Total IBD yield evolution observed as a function of ²³⁹Pu fission fraction
- Linear fit to get the average IBD yield $\overline{\sigma}$ and the slope of the evolution $(d\sigma/F_g)/\overline{\sigma}$
 - Both quantities are not compatible the HM model \bullet
 - But agree with a summation model (SM2018)
- Evolution used to extract individual isotopic yields for ²³⁵U and ²³⁹Pu
 - ²³⁹Pu agrees with the HM model \bullet
 - 7.8% deficit in ²³⁵U (5.5% @ STEREO) ullet→ Primary contributor to RAA
- Unequal deficit weakens the sterile neutrino hypothesis (but cannot lead to the discovery)
- RENO results consistent, NEOS a bit different (despite being at one of RENO's core)

Further Looking at the Spectrum

- Experiments shift to get complex information flux&spectrum
 - Essentially flux measurement for energy bins \bullet
- Fuel evolution for several energy bins at Daya Bay
 - Measured spectrum (average yield in each bin) not consistent \bullet with HM and SM2018 models
 - Evolution slope fine for SM2018, small tension with HM \bullet

Talk by C. Roca

 $[(d\sigma/dF_9)/\bar{\sigma}]^e$ $\bar{\sigma}^e$ χ^2/NDF χ^2/NDF Model N_{σ} N_{σ} 1.8σ HM 675/6 25σ 11/6SM2018 748/6 5.5/60.7*o* 27σ $[10^{-43} \text{ cm}^2/\text{fission}]$ Data HM $\overline{\sigma}^{Meas.}$ - $\overline{\sigma}^{Pred.}$ SM2018 -0.1🕂 Meas. n**o**0000000000000 • HM $\sigma/dF_{9}/\overline{\sigma}$ -0.2**-** SM2018 -0.4ĕ -0.6 n 0⁰ 6⁰ 80 80 80 80 00 PRL 130, 211801 (2023) -0.80.35 0.25 0.35 6 4 $E_{rec}[MeV]$

Conclusions

- Great progress in the measurement of the isotopic yields of the reactor antineutrinos both from LEU and HEU reactors shed more light on the RAA
 - ²³⁵U yield lower than HM model and about the same as in summation model (SM2018)
 - ²³⁹Pu yield consistent with both HM and summation models lacksquare
- More flux(&spectrum) results to come
 - Possible combined LEU+HEU analyses e.g. PROSPECT+STEREO+Daya Bay
 - New measurements from e.g. PROSPECT, RENO, JUNO-TAO) •

- Shift towards the complex flux&spectrum measurement needed to
 - Further benchmark the prediction models across range of energies (e.g. SM2018 agrees with • data for total flux, but does not match for each energy)
 - Sterile neutrino mixing can be discovered by the oscillation pattern observation in the spectrum lacksquare

Talk by B. Littlejohn Talk by H. Steiger

B. Roskovec - Charles University

Plots

