Updates from the PROSPECT Reactor Antineutrino Experiment

September 20, 2023

PROSPECT Physics Motivations

Experimental Layout

Key HFIR Features

- Reactor:
 - 85 MW core burns only ²³⁵U
 - <50cm height, diameter
- Facilities:
 - Many m² of floor (~3m wide) 6-10m from core
 - Concrete monolith beneath: high floor loading
 - Adjacent to ground-level exterior doors
- Backgrounds:
 - Lead wall shields gammas from reactor direction
 - Neutron experiments below shielded by monolith
 - < I mwe overburden: little to no cosmic shielding
- Access:
 - 24/7 data/physical access for authorized personnel
 - HFIR ops rarely (<<1/y) require detector movement

Key HFIR Features

- Reactor:
 - 85 MW core burns only ²³⁵U
 - <50cm height, diameter
- Facilities:
- Currently exploring shielding and

community input in the future. mwe overburden: little to no cosmic shielding

- Access:
 - 24/7 data/physical access for authorized personnel
 - HFIR ops rarely (<<I/y) require detector movement

SONGS

Key Detector Features

- Prompt e⁺ gives \overline{V}_e energy estimate (>400 pe/MeV)
- Fully-contained, single-cell delayed n-⁶Li signal
- Prompt, delayed PSD differ from common background classes
- Double-end PMT readout and segmentation allows XYZ reco and topology cuts
- Reactor-on data rates are only manageable with zero-suppression of segments and PMT waveforms!

⁶Li-doped Liquid PSD Scintillator

PR SPECT

- Essential R&D achievement for PROSPECT success: PSD-capable ⁶Li-loaded LS
 - BNL-produced formulation based on commercial EJ-309
 - Higher scintillation yield than LAB-based scintillator with PSD (FOM > 2 at 0.53MeV_{ee} nLi peak)
 - 30% light collection degradation over ~Iy physics run; can be improved with better environmental isolation
 - Improved BNL and new <u>LLNL</u> formulations being considered for future PROSPECT efforts

IBD Selection Illustrations

- IBD selection techniques described in last slide enable high signal:background despite near-total lack of overburden
 - S:B > I at all energies below 6 MeV E_{prompt} , >10:1 for some energies
 - Achieved best-ever S:B for an overburden-free reactor IBD experiment despite an increasing number of non-functioning PMTs during operations
- Remaining backgrounds are dominated by cosmic neutron primaries (no muons, so cannot be easily vetoed)

IBD Selection Illustrations

8 10 12 Prompt Energy [MeV]

- IBD selection techniques described in last slide enable high signal:background despite near-total lack of overburden
 - S:B > I at all energies below 6 MeV E_{prompt}, >10:1 for some energies

If you want to make an on-surface or near-surface monitoring detector, consider this technology. Counts Reactor Off, Scaled (Total) IBD Candidates (Total) 10 3000 10^{4}

10³

10²

2

6

8

4

2000

1000

0

2

12

10

Prompt Energy[MeV]

Cosmic Simulations For IBD Detectors

- PROSPECT developed mature, data-benchmarked cosmic simulation software tailored to reactor IBD experiments
 - Demonstrates dominance of cosmic neutrons (not muons!) on surface
 - Configurable inputs can be used to optimize many IBD detector types/styles
 - PRApp manuscript in the works (<u>ask us about using this simulation package!</u>)

Results: Final ²³⁵U Reference Spectrum

- For final PROSPECT analyses, we leverages previouslyunused data from partially functioning segments
 - Split the dataset: five periods with different live segment maps
 - Use single-ended segments: their PSD values can reject fast neutron recoils

4.40			4.62		145	1.10	1.17	4.00	110	120	100	100	100
140	141	142	143	166	145	146	147	148	148	160	161	152	152
126	127	128	129	130	134	132	133	134	135	136	137	130	136
112	113	154	115	115	117	118	119	120	121	122	123	124	125
98	99	100	101	102	103	164	105	106	107	106	109	110	111
84	85	86	87	88	89	90	91	92	93	94	95	96	97
70	71	72	73	74	75	78	77	78	79	80	81	82	83
66	67	58	60	60	61	62	63	64	65	66	67	68	69
42	43	44	45	48	47	48	49	50	61	62	58	64	66
28	29	30	31	32	33	34	35	36	37	38	39	40	41
14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	1	2	а	4	5	6	7	8	9	10	11	12	13

Period 1

Period 2

Period 3

Period 4

140	141	142	143	144	145	148	147	148	149	160	151	152	153
126	127	126	129	130	131	132	133	134	135	138	137	138	130
112	113	114	115	116	117	118	119	120	121	122	123	124	125
98	99	100	101	102	103	104	105	106	107	108	109	110	111
84	85	86	87	-88	89	90	91	92	93	94	95	96	97
70	71	72	73	74	75	76	77	78	79	80	81	82	83
55	57	58	50	60	61	82	63	64	65	68	67	68	63
42	43	44	45	46	47	45	-49	50	51	52	53	54	55
28	29	30	31	82	33	34	35	36	37	38	39	40	41
14	15	18	17	18	19	20	21	22	23	24	25	26	27
0	1	2	3	4	6	в	7	8	9	10	11	12	13

Period 5

Results: Final ²³⁵U Reference Spectrum

- Final ²³⁵U measurement achieves 2x higher statistical power
 - New ²³⁵U reference spectrum for AAP community is free of potential biases of model inputs (Huber, Summation) or sub-dominant isotopes (Daya Bay)
 - Spectrum Anomaly' relative to Huber conversion model observed in ²³⁵U, now with >3sigma statistical significance

Results: Final ²³⁵U Reference Spectrum

- Q:Are spectrum data-model disagreements present in all isotopes? Or only some?
- A: compare bump's amplitude for HEU (PROS) and LEU (DYB)
 - r = 0 (no ²³⁵U bump): disfavored at 3.7σ
 - r = 1.78 (Only a ²³⁵U bump): disfavored at 2.0σ
 - Detector systematics limit ability to compare LEU and HEU bump sizes (energy scale uncertainties!)
 - If we want to learn more, we must make LEU and HEU measurements with the same detector

PR©SPE

Future Steps: PROSPECT-II

- Performance + stability:
 - Match initial performance (maintain similar pitch, same scintillator formulation, etc.) while improving stability
- Remove PMTs from active volume
 - Eliminates main P-I failure mode
- Improve environmental control
 - Fewer materials in contact with LiLS
 - Improved cover gas system
 - Active cooling
- Enable emptying/refilling
 - Allows movement to multiple sites, such as HEU+LEU!

14

Multi-Site Physics With PROSPECT-II

- Q: If we deploy one IBD detector at different reactor types, how well can we measure isotopic IBD yields?
 - A: with combined HEU+LEU measurement, four fission isotopes' yields can be measured at 10%-level accuracy (241Pu, 238U) or much better (235U, 239Pu)
 - **JOIN US** in fully developing the (detector-agnostic) physics case for correlated HEU+LEU deployment (isotopic spectra, oscillations, etc)!

Fujikake, BRL, Rodrigues, Surukuchi, PRD 107 (2023)

Future: Oscillation in PROSPECT-I

- Final five-period PROSPECT oscillation search will feature ~x2 improved sensitivity
- Expect a final PROSPECT sterile search in 2023
- Working towards a joint analysis using final datasets from PROSPECT, STEREO, and Daya Bay

Future: Directionality in PROSPECT-I

- Downstream segments see substantially more IBD neutrons
- Effect is predicted by IBD MC properly taking into account the direction of neutrino propagation
- Analysis underway to quantify pointing capability of a PROSPECT-style detector: expect a publication in 2023-2024.

Conclusions and PROSPECTs

- PROSPECT has demonstrated >>1 S:B in an overburden-free reactor IBD experiment: a major achievement for AAP
- Along the way, we've developed tech, tools, and knowledge:
 - Leading sterile oscillation limits and reference ²³⁵U spectra
 - Li-doped PSD-capable LiLS and supporting IBD detector design concepts
 - Versatile and reliable cosmic background simulations
 - A user-friendly US-based reactor neutrino lab at HFIR
- Working towards a multi-site deployment of PROSPECT-II

Backup

Experimental Layout

Detector Layout

22

NOVEMBER 17, 2017 YALE WRIGHT LAB

FINAL ROW INSTALLATION

Low-Level Processing Examples

- 50 ADC (~5 PE) trigger threshold: both PMTs on a segment
- 20 ADC (~2PE) zero-suppression threshold
 - Only read out waveform chunks in the vicinity of 20+ ADC sections
- FADC low-level pulse processing quantities: baseline, pulse area, PSD peak + tail, timestamps

IBD MC: Predicted Energy Response Respo

- Full-detector IBD prompt energy response modeled by PG4 IBD MC
- Substantial off-diagonal contribution from energy leakage into dead/non-fiducial segments, optical grid walls

Non-Fuel Contributions

- Non-negligible neutrinos from activation of Al-28 in core structure, production of He-6 in beryllium reflector
- ~9% contribution at lowest IBD energies

PROSPECT, PRL 122 (2019)

Effect is stable within 0.1% at cycle beginning and end.

26