

TAO - The Taishan Antineutrino Observatory

HANS TH. J. STEIGER^{1, 2} on behalf of the JUNO Collaboration

¹ Cluster of Excellence PRISMA⁺, Johannes Gutenberg Universität Mainz ² Technische Universität München, School of Natural Sciences, Physics Department

Scientific Motivation - The Taishan Antineutrino Observatory

New EPR

Taishan 1

JUNO:

Neutrinos from two Nuclear Power Plants 26.6 GW_{th} power

JUNO-TAO:

Located at Taishan 1 reactor core (4590 MW_{th})

- \sim 44 m distance to the core
- \sim 36 × JUNO statistics
- \sim 10% background-to-signal ratio

Scientific Motivation - Taishan Antineutrino Observatory

Measure reactor anti-neutrino spectrum with high resolution

- provide model-independent reference for JUNO
- benchmark to test nuclear databases
- Improved measurement of **isotopic antineutrino yields and spectra** improve nuclear physics **knowledge of neutron-rich isotopes**
- shed light on reactor spectrum anomaly (5 MeV bump)
- searching for light sterile neutrinos with a mass ~1 eV
- ~36 × JUNO statistics

TAO Design Features:

- 2.8 ton Gd-LS as target material (1 ton fiducial mass)
- Detector placed at 44 m distance from a 4.6 GW_{th} reactor core
- 10 m² SiPM, with 50% PDE, Coverage: > 94%
- SiPMs and LS cooled down to -50 °C

Expected Performance:

- ~ 4300 p.e. / MeV collected charge
- Energy Resolution: ~ 2.0% @ 1 MeV, < 1.0% above 3 MeV

Conceptual Design Report Released in May 2020! arXiv: 2005.08745v1

Project Budget: 5 M€ Fully funded!

IHEP, INFN, JINR

Scientific Motivation - Taishan Antineutrino Observatory

Comparison of the summation spectrum and three convoluted energy spectra with respective energy resolutions of TAO, JUNO and Daya Bay.

The expected relative spectrum shape uncertainty (for ²³⁵U and ²³⁹Pu) spectra for 3 years of data taking copmared with Daya Bay

The TAO Detector Design

Highlights:

- Energy resolution < 2% @ 1 MeV</p>
- SiPM PDE >50% (approx. 4500 p.e. / MeV)
- > SiPM coverage: ~ 94% , ~ 10 m²
- SiPM DCR: <100 Hz/mm² @ -50°C
- High performance Gd-LS

Central detector

- > Acrylic sphere: 1.8m (ID), 20mm-thick with 2.8 t Low-T Gd-LS
- **Copper shell** 1.886 m (ID), 12mm-thick with **4024** pieces of 50x50mm² **SiPM tiles**
- **SS tank** 2.09m(ID), 10mm-thick with 3.2 t LAB/Gd-LAB
- > Cryogenic system:
 - 4.5kW cooling power
 - 150mm-thick melamine foam insulation

Top Veto Tracker (TVT)

4-Layer PS, 160 strips (Strip Size: $2 \text{ m} \times 20 \text{ cm} \times 2 \text{ cm}$)

Top Shield(HDPE)

ACU & CLS

6 types of exemption sources

Water Tank

3 irregular water tanks ~300 3" PMTs

Overflow Tank Cu Shell SiPM Array **Acrylic Vessel** SS Tank Insulation (MF) Bottom Shield(Lead)

Copper shell production

- Started from March 2021, upper-semi CS done in Feb. 2023, lower-semi CS done in May ٠ 2023. Welding is very difficult \rightarrow patent granted!
- Precision: ٠
 - Inner diameter (1886.0 \pm 0.5) mm, thickness (12.0 \pm 0.2) mm ٠
 - Flatness (1910.00 ± 0.08) mm ٠
 - Hole diameters (5.30 \pm 0.05) mm ٠
 - Angular precision < 0.01° , Position (4 π) < 0.04mm
 - Tile models mounting easy, gaps reasonable. ٠

All surfaces in contact with detector liquids are coated with PTFE (25~50um) for LAB/LS compatibility requirement.

Dividing(8 parts)

Turning and milling

Machining done

Assembly & welding

Degreasing

Welding done

PTFE coating done Sandblasting

Uncovered half of the Copper Shell (CS)

PTFE coated half-spheres

Muon Veto System

Top Veto Tracker (TVT)

- Plastic scintillator + SiPM + WS-fiber
- > 99% μ tagging efficiency
- 4-Layer PS, 160 strips, 2 m×20 cm×2 cm/strip 2.4m attenuation length, 9000 Photons / MeV
- 4 SensL J-40035 SiPMs one end, total 1320 pieces, coupled with optical grease
- 57 PS pieces produced and accepted

Water Tank (WT)

- 3 irregular water tanks
- ~ 300 x 3-inch PMT from JUNO
- Water quality was monitored for ~ 5 months,
 - no big change
 - no purification cycling needed
- Water tank prototype test ongoing

IBD signal	2000 events/day
Muon rate	$70~{ m Hz/m^2}$
ast neutron background before veto	1880 events/day
Fast neutron background after veto	< 200 events/day
Singles from radioactivity	$< 100 { m ~Hz}$
Accidental background rate	< 190 events/day
⁸ He/ ⁹ Li background rate	$\sim 54 \text{ events/day}$

Calibration Systems: ACU (Automated Calibration Unit) & CLS (Cable Loop System)

Two Calibration Systems: ACU and CLS

ACU:

- can deploy 3 different sources inside the detector alongside the z-axis
- a turntable revolves to a specific angle
- Light source: ultraviolet (UV)
- Radioisotopes:
 - ⁶⁸Ge source
 - combined source with multiple gamma emitters and one neutron source

Cable Loop System (CLS):

- designed with a single radioactive source
- that can be deployed off axis

Calibration Strategy of the JUNO-TAO Experiment Eur. Phys. J. C 82 (2022) 12, 1112, arXiv: 2204.03256

Schematic Drawing of the Automated Calibration Unit

Frontend Readout

TIA

Few mV

- *Equivalent noise charge < 0.1 p.e.*
- *Charge resolution: < 15%*
- Timing: τ_1 =4 ns in GdLS \rightarrow time resolution <1 ns
- Dynamic range: <15 p.e./cm² on SiPMs for events in the FV \rightarrow 1-375 p.e (or 1-12 p.e.) depending on the number of channels/tile

From

SiPM

- Power consumption: inside the cryostat <3 kW (Δ T below ±0.5°C)
- Radio-purity: same consideration as for the PCB hosting the SiPM
- Discrete readout: 1 channel/tile
 - Easy, reliable and robust option with commercial ICs
 - Series/parallel connection to handle SiPMs capacitance
 - 4 different Transimpedance Amplifiers
 - Two gain stages to reduce TIA instability at high gain
 - ADC in the FEC board
- Trigger & DAQ
 - FECs manage the waveform integrations
 - FPGA based Central Unit (CU) manages the data stream and trigger algorithms 9

Gadolinium-loaded Liquid Scintillator (Gd-LS) for -50°C

- GdLS at -50 °C to lower SiPM dark noise
- transparency at -50 °C: A.L. >10m
- light yield at -50 °C: \sim 4300 p.e./MeV (incl. SiPMs PDE, coverage and A.L.)
- long-term stability of the light yield and transparency!
- Safety (low volatility & high flashpoint) → Nuclear Power Plant
- Recipe:

LAB + 0.1%Gd + 3g/L PPO + 2mg/L bis-MSB + 0.5% DPnB

Gadolinium-loaded Liquid Scintillator (Gd-LS) for -50°C PSD and p-quenching study at the INFN-LNL

Study:

- **time profiles** for gamma and neutron excitation
- **QFs** for gamma and **neutron** interactions

Successfully measuring the scintillation time profiles and quenching factors for JUNO LS and JUNO-TAO Gd-LS allows us to **improve our understanding of the energy transfer mechanism** in these substances even at low T!

Measurements provide valuable input data for TAO (also for JUNO):

- Basis for reliable Monte Carlo simulations
- Development of event reconstruction algorithms and PSD techniques

QF for proton recoils in the warm and cold TAO scintillator

1:1 Prototype Experiment

Purpose:

- Test key installation procedures
- avoid big issues and save time on site in Taishan
- Critical: CS rotation, SiPM assembly, cabling, tools)
- Test performance of cryogenic system, real SiPM tiles, LS, calibration system, etc..

Progress:

- All key installation steps and tools verified.
- SiPM tiles assembly procedure optimized (10k class clean room)
- Commissioning ongoing! → stay tuned!

Cooling Down the Gd-LS makes it slower: Time Profiles at low Temperatures with UV-Excitation

Spectrofluorometer: Edinburgh Instruments FS-5 with TCSPC modules

- *Cuvette: 10x10x40mm*³
- Active cooling down to -50°C
- Dryed nitrogen to flush the detector chamber!
- Strong increase in first decay time component!

TAO: Signal

- Inverse β-decay (IBD) in the Gd-doped scintillator:
 - Characteristic signature: prompt e⁺ related scintillation + delayed neutron capture
 - Probability for neutron capture by Gd: 87%
 - Delayed Coincidence: several γ's form a large ~ 8 MeV signal!
 - Average capture time: ~ 30 μs with 0.1%_m Gd loaded in the scintillator

SiPMs

SiPMs are one of the key ingredients of TAO:

- PDE higher compared to PMTs needed for the desired energy resolution
- PDE correlates with Dark Noise
- PDE correlates with cross-talk and afterpulsing
 - \rightarrow find the optimal tradeoff
- R&D with different companies finished
- HPK won the bid!
- Low-background materials are needed for PCBs (for both tiles and electronics) to meet the overall requirements on detector internal radioactivity

Parameter	Specification	Comments
PDE	> 50 %	@ 400 nm
DCR	< 100 Hz/mm ²	@ -50 °C
Correlated Noise	< 20 %	cross-talk and afterpulses
Uniformity of V_{bd}	< 10 %	Avoid bias voltage tuning
SiPM size	> 6 x 6 mm ²	simplicity and high coverage
SiPM tile size	> 50 x 50 mm ²	reduce number of channels
SiPM coverage in a tile	> 90 %	not included in PDE

Low Background Material for PCBs

lsotope	CuFlon [mBq/kg]	Arlon NT [mBq/kg]	Pyralux [mBq/kg]	Aramid [mBq/kg]
²²⁶ Ra	1.4	-	2.6	-
²²⁸ Th	1.2	100	1.4	260
⁴⁰ K	140	1000	4	1000

TAO: Backgrounds

9

Muons:

- Muon rate in TAO hall (~ 9.6m): ~ 70Hz
- Veto: **20 μs** veto signal by **Top Veto** or **Water Tank**
- less than 10% dead time.

Muon induced backgrounds:

- Fast neutrons:
 - recoil proton (prompt) + thermalized neutron capture (delayed)
 - mimic IBD
 - Muon veto time cuts most of the fast neutrons.
- Delayed-like signals:
 - neutron captures not rejected by the muon veto (rate \sim 0.2 Hz)
 - mimic IBD signal if in coincidence with a prompt signal from radioactive decays
- Cosmogenic radioactive isotopes: ⁹Li and ⁸He
 - decay emitting a prompt β and a delayed n

Natural radioactivity:

- major source of prompt events
 - from concrete walls: use passive shielding
 - internal: careful material selection (PCBs in SiPMs and electronics)

IBD signal	2000 events/day
Muon rate	$70 \ \mathrm{Hz/m^2}$
ast neutron background before veto	1880 events/day
Fast neutron background after veto	< 200 events/day
Singles from radioactivity	< 100 Hz
Accidental background rate	< 190 events/day
⁸ He/ ⁹ Li background rate	$\sim 54 \text{ events/day}$

