Isfu





The NEVFAR project:

New Evaluation of v Fluxes At Reactors

DE LA RECHERCHE À L'INDUSTRIE



Revisiting the summation calculation of reactor antineutrino spectra

Lorenzo Périssé<sup>(a)</sup>

Xavier Mougeot, Anthony Onillon<sup>(b)</sup>, Matthieu Vivier

CEA/IRFU/DPHP – CEA/List/LNE-LNHB

CEA-Saclay, 91191 Gif-sur-Yvette, FRANCE

16th Applied Antineutrino Physics workshop 18-21 September 2023, York

www.cea.fr

<sup>(a)</sup>Now at ILANCE (CNRS/UTokyo), Japan <sup>(b)</sup>Now at TUM, Germany



#### 1. Introduction & motivations

- a. Experimental anomalies
- b. Modeling methods

#### 2. Revised summation method

- a.  $\beta^{-}$  spectrum calculation
- b. Nuclear data content
- c. Uncertainty budget

#### 3. Comparison to experiments and models

- a. Integral measurements
- b. Spectrum shape

#### 4. Conclusion & perspectives



#### 1. Introduction & motivations

- a. Experimental anomalies
- b. Modeling methods
- 2. Revised summation method
  - a.  $\beta^-$  spectrum calculation
  - b. Nuclear data content
  - c. Uncertainty budget
- 3. Comparison to experiments and models
  - a. Integral measurements
  - b. Spectrum shape
- 4. Conclusion & perspectives

#### REACTOR ANTINEUTRINO ANOMALY (RAA)

- Systematic IBD rate deficit vs to HM
- Measured/predicted IBD rate: **0**. **936**<sup>+0.024</sup><sub>-0.023</sub> (2.5σ)
- RAA possible origins
  - Experimental bias

- Unlikely
- New physics (sterile neutrino)
- $\blacktriangleright$  Mismodeling / underestimation of  $\overline{\nu}_e$  spectrum uncertainty
- Single / multiple actinide(s) ?

#### **SHAPE ANOMALY**

- First observed by Double Chooz, Daya Bay; RENO
  - Confirmed by recent very-short baseline reactor exp. (NEOS, STEREO, PROSPECT, DANSS)
- Possible origins
  - Detector energy scale calibration
     Checked
  - Fuel composition
  - Prediction issue, single / multiple actinide(s) ?

### **FUEL-DEPENDENT IBD RATE EVOLUTION**

- IBD yield changes with fuel evolution of PWR
- Comparison between measured IBD yield evolution and predicted evolution
  - $3.1\sigma$  at Daya Bay
  - 1.3σ at RENO
- Induced by inequal fractional deficit among actinides







#### Л

#### **REACTOR DATA-DRIVEN METHOD**

- Unfolding exp. prompt IBD spectrum
  - $\succ \bar{v}_e$  spectrum + covariance matrix

### PROS الم

- Model-independent (no anomalies)
- Small uncertainties

## E CONS

- Limited to exp. range, 1.8-9 MeV
- Small number of available datasets
- No activation spectrum

Daya Bay: Total, <sup>235</sup>U, <sup>239</sup>Pu RENO, NEOS: Total

STEREO, PROSPECT: <sup>235</sup>U

#### b. Different modeling methods

#### **CONVERSION METHOD**

- Measure exp.  $\beta$  fission spectra
- Convert virtual  $\beta$  branch fit to  $\bar{\nu}_e$  branches

### 沟 PROS

- Small uncertainties ~2-3%
- Access total  $\bar{v}_e$  fission spectrum

## E CONS

- Limited to exp. range, 2-8 MeV
- No activation spectrum
- HM subject to the anomalies
- BILL data questionned  $\rightarrow$  KI exp.
- Impact of forbidden branches on fit

#### **SUMMATION METHOD**

- Fission spectrum prediction = sum of all β branches listed in nuclear databases
- +900  $\beta^-$  emitters ~ 10 000  $\beta^-$  transitions

### 沟 PROS

- Prediction ∀ energy, ∀ β emitter
   ► CEvNS
- Convenient to understand physics
- Mandatory for activation spectra

#### 

- Uncomplete/biased nuclear database
- Modeling approximations
- Uncertainties very complex to estimate

Huber-Mueller model (+ KI data)

#### ⇒ <sup>235</sup>U, <sup>239</sup>Pu and <sup>241</sup>Pu from P. Huber PRC 84, 024617 (2011)

 $\Rightarrow \frac{^{235}\text{U}/^{239}\text{Pu data from Kl}}{^{\text{PRD 104, L071301 (2021)}}}$ 

 $\Rightarrow {}^{238}\text{U from Mueller et al.} \\ \underline{PRC 83, 054615 (2011)}$ 

#### b. Different modeling methods

#### **THE NEVFAR PROJECT**

(New Evaluation of v Fluxes At Reactor)



- Revise summation method with BESTIOLE code
  - Improve β-decay modeling
    - Refine non-unique forbidden transition modeling
  - ▷ Impact of database uncompleteness and quality
    - Update nuclear database with Pandemonium-free data
    - Adjusted effective modeling for nuclides with no data
  - Build a comprehensive uncertainty budget
    - Nuclear data and modeling uncertainties

#### **SUMMATION METHOD**

- Fission spectrum prediction = sum of all β branches listed in nuclear databases
- +900  $\beta^-$  emitters ~ 10 000  $\beta^-$  transitions

### រ៉ុ<sub>្ន</sub> PROS

- Prediction ∀ energy, ∀ β emitter
   ► CEvNS
- Convenient to understand physics
- Mandatory for activation spectra

#### 

- Uncomplete/biased nuclear database
- Modeling approximations
- Uncertainties very complex to estimate

#### ⇒ Reliable summation method required for multiple purposes



- 1. Introduction & motivations
  - a. Experimental anomalies
  - b. Modeling methods

#### 2. Revised summation method

- a.  $\beta^{-}$  spectrum calculation
- b. Nuclear data content
- c. Uncertainty budget
- 3. Comparison to experiments and models
  - a. Integral measurements
  - b. Spectrum shape
- 4. Conclusion & perspectives

#### **MODELING OF NON-UNIQUE TRANSITIONS**

- Disregarded in previous modeling (modeled as allowed or unique forbidden)
- Hayes *et al.* (2014) + Hayen *et al.* (2019): modelings of non-unique transitions in conversion predictions → partial explanation of shape anomaly
- Nuclear structure calculation with NuShellX
  - Very time consuming (man & cpu)
  - No general nor systematic trend
- 23 non-unique forbidden transitions contribute to  $|\sim$  27% of IBD yield

~22% of CE $\nu$ NS yield

#### $\Rightarrow$ Using NSC decreases IBD yield by (1.3 $\pm$ 0.2)%



#### **MODELING OF NON-UNIQUE TRANSITIONS**

- Disregarded in previous modeling (modeled as allowed or unique forbidden)
- Hayes *et al.* (2014) + Hayen *et al.* (2019): modelings of non-unique transitions in conversion predictions → partial explanation of shape anomaly
- Nuclear structure calculation with NuShellX
  - Very time consuming (man & cpu)
  - No general nor systematic trend
- •23 non-unique forbidden transitions contribute to  $|\sim$ 27% of IBD yield

~22% of CE $\nu$ NS yield



 $\Rightarrow$  Using NSC decreases IBD yield by (1.3  $\pm$  0.2)%

#### TACKLING THE PANDEMONIUM EFFECT IN SUMMATION SPECTRA

HPGe detector, high energy resolution + decreasing efficiency for increasing energies

- $\beta$  feedings to low (high) energy levels are overestimated (underestimated)
- Nuclear database are biased by the Pandemonium effect
  - Estienne et *al.* (2019): including Pandemonium-free TAGS data decreases IBD yields and shape differences

• Including up-to-date Pandemonium-free data (TAGS + Direct β measurements)

- $\Rightarrow$  IBD yield decreased by (12.8  $\pm$  1.5) %
- $\Rightarrow \sim$  65% of IBD and CE $\nu NS$  yields
- Remaining isotopes potentially impacted by Pandemonium in nuclear database
  - 29 isotopes identified by IAEA
  - Apply correction for residual Pandemonium effect
    - $\Rightarrow$  IBD yield decreased by (2.2  $\pm$  2.4) %
    - $\Rightarrow \sim$  12% of IBD and CE $\nu NS$  yields



### **TACKLING THE PANDEMONIUM EFFECT IN SUMMATION SPECTRA**

• HPGe detector, high energy resolution + decreasing efficiency for increasing energies

• β feedings to low (high) energy levels are overestimated (underestimated)

• Nuclear database are biased by the Pandemonium effect

• Estienne et *al.* (2019): including Pandemonium-free TAGS data decreases IBD yields and shape differences

• Including up-to-date Pandemonium-free data (TAGS + Direct β measurements)

 $\Rightarrow$  IBD yield decreased by (12.8  $\pm$  1.5) %

- $\Rightarrow \sim$  65% of IBD and CE $\nu NS$  yields
- Remaining isotopes potentially impacted by Pandemonium in nuclear database
  - 29 isotopes identified by IAEA
  - Apply correction for residual Pandemonium effect
    - $\Rightarrow$  IBD yield decreased by (2.2  $\pm$  2.4) %
    - $\Rightarrow \sim$  12% of IBD and CE $\nu NS$  yields



#### c. Uncertainty budget



| IBD yields (10 <sup>-43</sup> cm <sup>2</sup> /fission) |              |  |  |  |
|---------------------------------------------------------|--------------|--|--|--|
| <sup>235</sup> U:                                       | 6.25 ± 0.21  |  |  |  |
| <sup>238</sup> U:                                       | 10.01 ± 0.32 |  |  |  |
| <sup>239</sup> Pu:                                      | 4.48 ± 0.15  |  |  |  |
| <sup>241</sup> Pu:                                      | 6.58 ± 0.21  |  |  |  |

 $\Rightarrow$  IBD yield uncertainty  $\sim$ 3%

| <b>CE</b> v <b>NS yields</b> * (10 <sup>-43</sup> cm <sup>2</sup> /fission) |           |  |
|-----------------------------------------------------------------------------|-----------|--|
| <sup>235</sup> U:                                                           | 1113 ± 34 |  |
| <sup>238</sup> U:                                                           | 1669 ± 48 |  |
| <sup>239</sup> Pu:                                                          | 882 ± 25  |  |
| <sup>241</sup> Pu:                                                          | 1169 ± 33 |  |

\* For a Ge target nucleus and 20 eV detector threshold

 $\Rightarrow$  CEvNS yield uncertainty  $\sim$ 3%

## **NORMALIZATION UNCERTAINTY**

### **FRACTIONAL UNCERTAINTY**

| PWR                |                                        |                     |                  | $\langle \sigma_{IBD} \rangle$ | $\langle \sigma_{CE\nu NS} \rangle$ |  |
|--------------------|----------------------------------------|---------------------|------------------|--------------------------------|-------------------------------------|--|
| [10 <sup>-4;</sup> | <sup>3</sup> cm <sup>2</sup> /fission] |                     |                  | 6.08                           | 1090                                |  |
|                    | Uncertainty                            | Abbrev.             | Method           | [%]                            | [%]                                 |  |
|                    | Endpoint + Spin-parity                 | E <sub>0</sub> + Jπ | MC               | 0.1                            | 0.1                                 |  |
| DATA               | Branching ratio + $\beta^-$ intensity  | $BR + I_{\beta}$    | MC + Analytic    | 0.4                            | 0.3                                 |  |
|                    | Residual Pandemonium                   | RP                  | Analytic         | 2.5                            | 2.4                                 |  |
|                    | Direct $\beta$ measurement             | Dβ                  | Analytic         | 1.5                            | 1.2                                 |  |
|                    | Nuclides with no data                  | NND                 | Pool modeling    | 0.8                            | 0.5                                 |  |
|                    | Fission yield                          | FY                  | Analytic         | ~0.7                           | ~0.6                                |  |
|                    | Fission fraction                       |                     | Analytic         | ~0.7                           | ~0.7                                |  |
| MODELING           | Weak magnetism                         | WM                  | Model comparison | 0.3                            | 0.2                                 |  |
|                    | Radiative corrections                  | RC                  | Model comparison | 0.1                            | 0.1                                 |  |
|                    | Non-unique transitions                 | NU                  | Model comparison | 0.4                            | 0.4                                 |  |
|                    | Nuclear struct. calcul.                | NSC                 |                  | 0.2                            | 0.1                                 |  |
|                    | <ul> <li>ξ-approximation</li> </ul>    | ξ                   |                  | 0.3                            | 0.3                                 |  |
|                    | Cross-section                          |                     | Analytic         | 0.1                            | 0.5                                 |  |
|                    | TOTAL                                  |                     |                  | 3.1                            | 2.9                                 |  |

\* For a Ge target nucleus and 20 eV detector threshold



# ⇒ Uncertainty budget dominated by RP and Dβ (+ NND at high energy)



- 1. Introduction & motivations
  - a. Experimental anomalies
  - b. Different modeling methods
- 2. Revised summation method
  - a.  $\beta^-$  spectrum calculation
  - b. Nuclear data content
  - c. Uncertainty budget

#### 3. Comparison to experiments and models

- a. Integral measurements
- b. Spectrum shape
- 4. Conclusion & perspectives

#### 3. Comparison to experiments and models

a. Integral measurements

Predictions and Bugey-4 taken from <u>Giunti et al., Phys. Lett. B, 829, 137054 (2022)</u> 1: PRL 123, 111801 (2019) 2: PRD 104, L111301 (2021) 3: PRL 125, 201801 (2020)





- DB / BESTIOLE =  $0.982 \pm 0.015$  (exp)  $\pm 0.031$  (model)
- DB / HM = 0.945  $\pm$  0.014 (exp)  $\pm$  0.024 (model)
- $\Rightarrow$  Significance at 0.5 $\sigma$  for BESTIOLE and 1.9 $\sigma$  for HM

- $\Rightarrow$  BESTIOLE consistent within  ${\sim}2\sigma$  with global rate analysis
- $\Rightarrow$  Discrepancy with HM favors RAA caused by  $^{235}\text{U}$  HM flux



 $\Rightarrow$  Impact of FY seen in upper energy range

STEREO + PROSPECT data from <u>Almazán et ak. (2022)</u> Daya Bay + PROSPECT data from <u>An et al. (2022)</u>

## **RATIO OF IBD SPECTRA**

Shape only comparison, predictions normalized to data

- Gaussian distorsion not significantly favored in 5-7 MeV
  - Gaussian bump hypothesis favored by  $\leq 2.3\sigma$

⇒ Overall good shape agreement with experimental IBD spectra within uncertainty





- 1. Introduction & motivations
  - a. Experimental anomalies
  - b. Different modeling methods
- 2. Revised summation method
  - a.  $\beta^-$  spectrum calculation
  - b. Nuclear data content
  - c. Uncertainty budget
- 3. Comparison to experiments and models
  - a. Integral measurements
  - b. Spectrum shape

#### 4. Conclusion & perspectives

## **KEY POINTS OF BESTIOLE SUMMATION PREDICTION**

#### All modeling impacts considered and quantified

- Nuclear structure calculation for 23 non-unique branches
  - ▶ IBD yield decreased by (1.3 ± 0.2)%

#### Quality of data checked for all data sources

- Correction for Residual Pandemonium
  - ▶ IBD yield decreased by (2.2 ± 2.4)%
  - Measurement needed to validate RP correction

#### **Comprehensive uncertainty budget**

Uncertainty budget of summation model for the first time ever

#### **Complete revision of summation method**

- Overall good agreement with data
- Results favors RAA caused by <sup>235</sup>U HM flux

#### Next steps for further improvement...

- Fission yield correlation matrix for data and evaluation
- Remaining non-unique forbidden branches

⇒ Article on arXiv with supplementary materials, soon to be published

# Final IBD and CEvNS yield uncertainty budget ~3%

#### Led by RP correction

⇒ more Pandemonium-free data needed



v kinetic energy [MeV]

Reach of a comprehensive summation model, needed for validation