

LEVERHULME TRUST_____

The MUonE experiment

Riccardo Nunzio Pilato University of Liverpool

Meeting of the Muon Group 1st June 2023

The muon g-2: Standard Model calculation

$a_{\mu}{}^{HLO}$: present status

New lattice results in the intermediate window (~30% a_{μ}^{HLO}):

New CMD3 result for $a_{\mu}^{HLO}(\pi^{+}\pi^{-})$

a_{μ}^{HLO} : space-like approach

HLOMUonE: a new independent evaluation of a_i

4

5

Extraction of $\Delta \alpha_{had}(t)$ from the shape of the $\mu e \rightarrow \mu e$ differential cross section

- A beam of 160 GeV muons allows to get the whole a^{HLO}_µ
 (88% directly measured + 13% extrapolated).
- Correlation between muon and electron angles allows to select elastic events and reject background (e⁺e⁻ pair production).
- Boosted kinematics: $\theta_{\mu} < 5 \text{ mrad}, \theta_{e} < 32 \text{ mrad}.$

The experimental apparatus

Achievable accuracy

40 stations (60 cm Be) + 3 years of data taking = $(~4x10^{12} \text{ events})$ E_a > 1 GeV) ~0.3% statistical accuracy on $a_{\mu}^{\ HLO}$

Competitive with the latest theoretical predictions.

Main challenge: keep systematic accuracy at the same level of the statistical one

Systematic uncertainty of 10 ppm in the signal region.

Systematic effects, some examples:

- Longitudinal alignment (~10 μm)
- Knowledge of the beam energy (few MeV)
- Multiple scattering
- Angular intrinsic resolution
- Theory: MC @NNLO

Location: M2 beamline at CERN

- Location: upstream the COMPASS detector (CERN North Area).
- Low divergence muon beam: $\sigma_{x'} \sim \sigma_{y'} \sim 0.2$ mrad.
- Spill duration ~ 5 s. Duty cycle ~ 25%.
- Maximum rate: 50 MHz (~ 2-3x10⁸ μ ⁺/spill).

-100

X (mm)

Tracker: CMS 2S modules

Silicon strip sensors currently in production for the CMS-Phase2 upgrade.

- Two close-by strip sensors reading the same coordinate:
- Suppress background of single sensor hits.
- Reject large angle tracks.
 - Pitch: 90 μm
 - Digital readout
 - Readout rate: 40 MHz
 - Sensitive area: 10×10 cm²
 - Thickness: 2 × 320 μm

Tracking station

Tracking station

A new design under development at Liverpool.

Carbon Fiber tubes for the mechanical structure: (sub ppm) 0 CTE along the longitudinal direction.

First prototype to be assembled in the next weeks.

MUonE simulations: Improving resolution - tilted geometry

- Improvement mainly due to charge sharing between adjacent strips
- Tune the tilt angle and the digitization threshold to equalize the number of hits composed of 1 or 2 strips.

Final resolution 22 μ m \rightarrow ~10 μ m

Beam Test 2021-2022

- Fall 2021: parasitic beam test.
 - Low beam rate (~10kHz).
 - 2 modules in the MUonE station + 2 modules in an external box.
- Summer 2022: intermittent beam test at the final MUonE location.
 - 4 modules in the MUonE station.
- October 2022: 1 week beam test as main users.
 - Fully equipped tracking station + ECAL.

Positive results on the thermal stability of the tracking system and the 2S modules synchronization.

Test the

analysis strategy

14

A 3 weeks Test Run with a reduced detector has been approved by SPSC, to validate our proposal.

Main goals:

- Confirm the system engineering.
- Monitor mechanical and thermal stability.
- Test the detector performance.
- Assess the strategy for the systematic errors.
- Measure $\Delta \alpha_{lep}(t)$ with a few % precision.

Sensitivity to $\Delta \alpha_{had}(t)$

 $\Delta \alpha_{had}(t)$ parameterization: inspired from the 1 loop QED contribution at t < 0:

$$\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3} \frac{M}{t} + \left(\frac{4}{3} \frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6} \right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \ln \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}$$
2 parameters:
K, M
15

Calculation of $a_{\mu}^{ m HLO}$

Extraction of $\Delta \alpha_{had}(t)$ through a template fit to the 2D (θ_{e}, θ_{μ}) distribution

Simulation @ final luminosity: 1.5x10⁴ pb⁻¹

 4×10^{12} elastic events with E_e > 1 GeV (θ_e < 32 mrad)

 $a_{\mu}^{\text{HLO}} = (688.8 \pm 2.4) \times 10^{-10}$ (0.35% stat error)

> Input value: $a_{\mu}^{\text{HLO}} = 688.6 \times 10^{-10}$

Main systematics have large effects in the normalization region. (no sensitivity to $\Delta \alpha_{had}$ here)

- Multiple scattering model.
- Detector angular resolution.
- Beam energy scale.

Example: systematic error on the multiple scattering

G. Abbiendi et al JINST (2020) 15 P01017

Expected agreement data/MC on the core of multiple scattering: ± 1% PDG parameterization:

 $\sigma_{MS} \propto \sqrt{rac{x}{X_0}}$

x = target thickness

 X_0 = radiation length

Strategy for the systematic effects

Promising strategy:

- Study the main systematics in the normalization region.
- Include residual systematics as nuisance parameters in a combined fit with signal.
- MESMER MC for the template fit + Combine tool to fit the nuisance parameters.

Selection cuts	Fit results		
$\theta_e \leq 32 \mathrm{mrad}$ $\theta_\mu \geq 0.2 \mathrm{mrad}$	$K = 0.133 \pm 0.028$		
	$\mu_{\rm MS} = (0.47 \pm 0.03)\%$		
	$\mu_{\rm Intr} = (5.02 \pm 0.02)\%$		
	$\mu_{\rm E_{\rm Beam}} = (6.5 \pm 0.5) {\rm MeV}$		
	$\nu = -0.001 \pm 0.003$		

- K_{ref} = 0.137 shift intr. res: +5%
- shift MS: +0.5%
- shift E_{heam}: +6 MeV

Next steps:

- Test the procedure using the FullSim (TB23 $\Delta\alpha_{_{\rm lep}}({\rm t})$ ideal for this).
- Improve the modelization of systematic effects.
- Move to the final statistics.

Time schedule

- Intense Beam Test activities in 2021-2022: first experience with detector in real beam conditions.
- 3 weeks Test Run in 2023: proof of concept of the experimental proposal using 1 tracking station + ECAL.
- Towards the full experiment: 5-10 stations before LS3 (2026). 2-4 months data taking: first measurement (few % precision) of a_{μ}^{HLO} .
- After LS3 (>2029) 3 years of running with the full apparatus (40 stations) to reach the aimed precision on $a_{\mu}^{\rm HLO}$ (~0.3% stat, same syst)

MUonE activity in Liverpool

• Hardware:

- Mechanical structure made of Carbon Fiber (0 CTE in the longitudinal direction).
- Simulation & Analysis:
 - Upgrade of the Beam Magnet Spectrometer (BMS) at the M2 beamline → precise determination of the beam energy profile.
 - Signal contamination due to pair production background.
 - Development of the final analysis strategy to extract $\Delta \alpha_{had}$.

MUonE group:

- T. Bowcock, J. Carroll, G. Casse, S. Charity, K. Ferraby, K. Hennessy,
- F. Ignatov, T. Jones, R. Pilato, J. Price, K. Rinnert, T. Smith, T. Teubner,
- G. Venanzoni, J. Vossebeld, C. Zhang.

BACKUP

 160 GeV muon beam on atomic electrons.

 $\sqrt{s} \sim 420 \,\mathrm{MeV}$

$$-0.153 \,\mathrm{GeV}^2 < t < 0 \,\mathrm{GeV}^2$$

$$\Delta \alpha_{had}(t) \lesssim 10^{-3}$$

Inspired from the 1 loop QED contribution of lepton pairs and top quark at t < 0

$$\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3}\frac{M}{t} + \left(\frac{4}{3}\frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6}\right)\frac{2}{\sqrt{1 - \frac{4M}{t}}} \ln \left|\frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}}\right| \right\}$$
 2 parameters: K, M

Allows to calculate the full value of $a_{\mu}^{\
m HLO}$

Dominant behaviour in the MUonE kinematic region:

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$

Other possible parameterizations are being investigated

Tracker: CMS 2S modules

- Each module is divided in two independent halves.
- Each half is composed of 1016 strips, 5 cm long.
- Each half is read-out by a CIC (Concentrator Integrated Circuit).
- A single half is divided in 8 sectors. Each sector is read-out by a CBC (CMS Binary Chip).
- Data from the CBCs are transmitted to the corresponding CIC, then sent to the back-end.

Tracker: CMS 2S modules

CMS Tracker Phase2 Upgrade - TDR

Two sensors reading the same coordinate:

- Background suppression from single-sensor hits.
 - Rejection of large angle tracks.

Stub information: position of the cluster in the seed layer + distance between position of correlation cluster and seed cluster (bend)

2S modules intrinsic resolution

Position of particles hitting the module at the boundary of two strips is reconstructed with higher precision (blue distribution).

Improve the intrinsic resolution

Tilt a 2S module around an axis parallel to the strip direction.

- Charge sharing: energy deposition of particles in the Silicon is shared among adjacent strips.

• Effective staggering: tilting a 2S module by a small angle will provide two measurements which are not redundant. (i.e. 25 mrad tilt = $\frac{1}{2}$ pitch staggering)

Improving the intrinsic resolution: tilted geometry

Best tilt angle: 233 mrad threshold: 6000 e^{-} (6 σ_{noise})

Tolerances in the assembly of the 2S modules and the mechanical structure: expected resolution is 8 – 11 μm

2S modules intrinsic resolution

Tilt angle [mrad]	Bend [strips]	Digitization threshold $[\sigma_{\text{noise}} \text{ units}]$	$\begin{array}{c} {\rm Resolution} \\ [\mu m] \end{array}$
210	4.25	5	7.8
221	4.5	5.5	11.5
233	4.75	6	8.0
245	5	6.5	11.2
257	5.25	7	8.7
268	5.5	7.5	11.0

Tolerance in the mechanical structure: 233 ± 6 mrad

Tolerance in the 2S modules assembly: \pm 50 μ m

Orthogonal displacement [µm]	$\begin{array}{c} {\rm Resolution} \\ [\mu m] \end{array}$
0	8.0
5	8.4
10	9.4
15	10.4
20	11.3
25	11.2
30	10.4

Expected resolution: 8 – 11 μm

Beam Test 2021

First demonstration of the full DAQ chain with the M2 asynchronous beam.

- Continuous stream of 40 MHz data from 2S modules captured to disk.
- Reliable readout over >6h runs.
- 30 TB of raw data collected to disk, ~1 TB after empty packets removal (low beam rate).
- Demonstration of 2S modules time synchronization.

Thermal stability of the tracking station

 ΔT mechanical structure ~ 1°C

Day/night variations can be reduced by installing the apparatus in a controlled environment.

Beam Test 2021-2022

First demonstration of the full DAQ chain with the M2 asynchronous beam.

- Continuous stream of 40 MHz data from 2S modules captured to disk.
- Demonstration of 2S modules time synchronization.

Test Run: expected sensitivity on $\Delta \alpha_{had}(t)$

Expected luminosity for the Test Run: $L_{TR} = 5 \text{ pb}^{-1} \longrightarrow ~10^9 \text{ events with } E_e > 1 \text{ GeV}$ ($\theta_e < 32 \text{ mrad}$)

We will be sensitive to the leptonic running ($\Delta\alpha_{\rm lep}(t)$ < $10^{\text{-2}}$)

Low sensitivity to the hadronic running ($\Delta \alpha_{\rm had}(t)$ < $10^{\text{-3}}$)

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$

K = 0.136 ± 0.026 (20% stat error)

Systematic error on the angular intrinsic resolution

±10% error on the angular intrinsic resolution.

36

Systematic error on the muon beam energy

Accelerator division provides E_{beam} with O(1%) precision (~ 1 GeV). It must be controlled by a physical process.

Effects of such shift on E_{beam} can be seen in our data in 1h of data taking per station.

Framework used for the analysis

- NLO MonteCarlo generator: MESMER
 - Allows to change the muon beam energy and simulate the beam energy spread.
- C++ fast simulation to include detector effects:
 - Multiple scattering effects in the target.
 - Angular intrinsic resolution.
 - Effects applied to (θ_e, θ_μ) taken from the NLO generator: track reconstruction effects are currently neglected.
 - Further effects to be included: MS non-Gaussian tails, background effects, MS in the silicon sensors.

Analysis workflow

- Combine performs a likelihood fit to the nuisance parameters for each template.
- Obtain the profile likelihood as a function of K.
- Best fit value of K is determined by parabolic interpolation among the template points.
- Nuisance parameters values for K = K_{best fit} are obtained by interpolation among the values obtained in the first step.

Promising strategy: staged approach.

- 1. Use a small fraction of data to refine the knowledge of the main sources of systematic error with respect to the initial modelization.
- 2. Include the residual systematics as nuisance parameters in a combined fit with the signal parameter on the entire dataset.

Currently tested on the Test Run statistics including the main systematic errors.

Generate a pseudo-data sample introducing shifts in the main sources of systematic error with respect to the expectations.

Source of	Shift	Expected
systematics	in the pseudo-data	uncertainty
Beam energy scale	$E_{\rm beam} \to E_{\rm beam} + 6{\rm MeV}$	$\Delta E_{\rm beam}=\pm 1{\rm GeV}$
Multiple scattering	$\sigma_{\rm MS} \rightarrow \sigma_{\rm MS} + 0.5\%$	$\Delta \sigma_{\rm MS} = \pm 1\%$
Angular intrinsic resolution	$\sigma_{\rm Intr} \to \sigma_{\rm Intr} + 5\%$	$\Delta \sigma_{\rm Intr} = \pm 10\%$
Luminosity		$\varepsilon = 1\%$

Are we able to determine precisely K and the nuisance parameters using this analysis strategy?

Step 1: identify the main systematic effects

- Template fit as a function of E_{beam}.
- μ_{MS} : nuisance parameter for systematics on the multiple scattering.
- μ_{Intr} : nuisance parameter for systematics on the angular intrinsic resolution.
- v: nuisance parameter for systematics on the normalization.

Selection cuts	Fit results
	$\Delta E_{\rm beam} = (0.006 \pm 0.006) \mathrm{GeV}$
$\theta_e \leq 32 \mathrm{mrad}$	$\mu_{\rm Intr} = (4.9\pm0.1)\%$
$\theta_{\mu} \ge 0.2 \mathrm{mrad}$	$\mu_{ m MS} = (0.6 \pm 0.1)\%$
	$\nu = 0.01 \pm 0.03$

Similar results also for different selection cuts. 42

Update the knowledge on the sources of systematic error

Exploit results obtained in step 1 to refine the knowledge on the sources of systematic error.

Source of systematics	Expected uncertainty	Updated model
Beam energy scale	$\Delta E_{\rm beam} = \pm 1 {\rm GeV}$	$\Delta E_{\rm beam}=\pm 20{\rm MeV}$
Multiple scattering	$\Delta \sigma_{\rm MS} = \pm 1\%$	$\sigma_{\rm MS} \to \sigma_{\rm MS} + 0.6\%$ $\Delta \sigma_{\rm MS} = \pm 0.5\%$
Angular intrinsic resolution	$\Delta \sigma_{\rm Intr} = \pm 10\%$	$\sigma_{\text{Intr}} \to \sigma_{\text{Intr}} + 5\%$ $\Delta \sigma_{\text{Intr}} = \pm 0.6\%$

Use this improved modelization to perform the combined fit to K and the residual systematics.

Simultaneous fit signal + nuisance parameters @L_{TR}

If the nuisance parameters are

introduced in the fit procedure...

If the systematics are not taken into account in the fit...

Tracking station

3 INVAR stations assembled at INFN Pisa.

Laser holographic system

Initial state

- Compare holographic images of the same object at different times.
- Fringe pattern is related to deformations of the mechanical structure.
- Developed at INFN Trieste, tested in 2022 at CERN.

Calorimeter

- 5x5 PbWO₄ crystals: area: 2.85x2.85 cm², length: 22cm (~25 X₀).
- Total area: ~14x14 cm².
- Readout: APD sensors.

Beam Test: July 2022, CERN East Area.

- Electrons in range 1-4 GeV.
- Overall debug of detector, DAQ.
- Absolute energy calibration, energy resolution.
- Calorimeter installed downstream the tracking station at M2 beam line in September.

DAQ architecture

- Single Serenity communicates with frontends in the Test Run
 - Expected event size : 1 Kb (Tk)
 - Output data split across 4 servers via 10 Gbps Ethernet (UDP)
 - Empty frames from beam gap forwarded in addition to in-spill data

Reduced data rate from servers

- Book-keep empty frames but do not forward to switch
- From switch to EOS/CTA with 20 Gbps
 - Test Run: read all data with no event selection.
 - Information will be used to determine online selection algorithms to be used in the Full Run.

Frontend DAQ

- Serenity card served as interface between the FE modules and downstream PC
- Firmware consisted of a number of blocks
 - IpGBT link interface firmware, and module control
 - Decoder to unpack stub packets from the modules
 - Aggregator to sort and collate stubs from each BX
 - Combiner to recombine these streams and send on to the ethernet link
 - Stub histogrammer to monitor stubs from a single link over a macroscopic time period (up to 30s)
- Large fraction of firmware in common with CMS
 - Hit data is under development/testing
 - Aggregator + Combiner are MUonE dedicated
- FE control software entirely in common with CMS
 - Based on Ph2ACF, adapted for Serenity
 - Allows us to configure modules, run calibrations etc.

Backgrounds

MESMERGEANT4• $\mu e^- \rightarrow \mu e^- \gamma$ • $\mu N \rightarrow \mu N \gamma$ • $\mu e^- \rightarrow \mu e^- e^+ e^-$ • $\mu N \rightarrow \mu N e^+ e^-$ • $\mu N \rightarrow \mu X$

GEANT4 simulations

Multiple scattering: results from TB2017

Multiple scattering effects of electrons with 12 and 20 GeV on Carbon targets (8 and 20 mm)

Main goals:

- to determine a parameterization able to describe also non Gaussian tails
- to compare data with a GEANT4 simulation of the apparatus

Multiple scattering: results from TB2017

$$f_e(\delta\theta_e^x) = N\left[(1-a)\frac{1}{\sqrt{2\pi}\sigma_G} e^{-\frac{(\delta\theta_e^x - \mu)^2}{2\sigma_G^2}} + a\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\sigma_T\Gamma(\frac{\nu}{2})} \left(1 + \frac{(\delta\theta_e^x - \mu)^2}{\nu\sigma_T^2} \right)^{-\frac{\nu+1}{2}} \right]$$

