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The muon g-2: 
Standard Model calculation

High precision calculations 
using perturbation theory

aµ
HLO is the leading order term

Perturbation theory cannot 
be used for this contribution



3

aµHLO : present status

TI Snowmass
 paper 2022

 0.6%

 0.8%

New lattice results in the 
intermediate window (~30% aµ

HLO):

 2.6%

Fermilab/
HPQCD/
MILC 
2301.08274 

2302.08834

New CMD3 result for aµ
HLO(π+π-)

https://arxiv.org/pdf/2203.15810.pdf
https://arxiv.org/pdf/2203.15810.pdf
https://arxiv.org/abs/2301.08274
https://arxiv.org/pdf/2302.08834.pdf
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aµHLO : space-like approach

Based on the measurement of Δαhad(t): 
hadronic contribution to the running of the 

electromagnetic coupling constant.

MUonE: a new independent evaluation of aµ
HLO

Carloni Calame, Passera, Trentadue, Venanzoni,
 Phys. Lett. B 746 (2015), 325

Lautrup, Peterman, De Rafael, Phys. Rep. C3 (1972), 193

https://www.sciencedirect.com/science/article/pii/S0370269315003573?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0370269315003573?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0370157372900117
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● A beam of 160 GeV muons allows 
to get the whole aµ

HLO 
(88% directly measured 
+ 13% extrapolated).  

● Correlation between muon and 
electron angles allows to select 
elastic events and reject 
background (e+e- pair production).

● Boosted kinematics:                       
   θµ < 5 mrad, θe < 32 mrad.

The MUonE experiment

Extraction of Δαhad(t) from the shape of the µe → µe differential cross section

From theoretical calculation
To be 

measured
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The experimental apparatus 

Eµ = 160 GeV

Be Si Si Si

Beryllium target 
1.5 cm thickness

Tracking system:
6 silicon strip detectors

10 cm
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40 stations
(60 cm Be) + 3 years of data taking = ~0.3% statistical 

accuracy on aµ
HLO

Achievable accuracy

Main challenge: 
keep systematic accuracy at the 
same level of the statistical one

Systematic uncertainty 
of 10 ppm in the signal region.

● Longitudinal alignment (~10 µm)
● Knowledge of the beam energy 

(few MeV)
● Multiple scattering
● Angular intrinsic resolution
● Theory: MC @NNLO

Competitive with the latest 
theoretical predictions.

Systematic effects, some examples:

(~4x1012 events 
Ee > 1 GeV)
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Location: M2 beamline at CERN

Beam momentum

σp/p ~ 3.75%

Beam spot

● Location: upstream the COMPASS detector 
(CERN North Area).

● Low divergence muon beam: σx’ ~ σy’ ~ 0.2 mrad.

● Spill duration ~ 5 s. Duty cycle ~ 25%.
● Maximum rate: 50 MHz (~ 2-3x108  µ+/spill). 

p ~ 160 GeV/c

σx ~ 1.3 cm

σy ~ 2.2 cm
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Tracker: CMS 2S modules

Silicon strip sensors currently in production for the CMS-Phase2 upgrade.

Two close-by strip sensors 
reading the same 

coordinate: 
● Suppress background 

of single sensor hits.
● Reject large 

angle tracks.

● Pitch: 90 µm
● Digital readout
● Readout rate: 40 MHz
● Sensitive area: 10×10 cm2

● Thickness: 2 × 320 µm
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Tracking station

(u, v) layer Target

Tilted 
(x, y) layers

● (x, y) layers tilted by 233 mrad: improve spatial resolution.
● Simulations: ~22µm → ~10 µm.

● (u, v) layers to solve reconstruction ambiguities.

Low CTE material: 
INVAR (CTE ~ 1.2x10-6 K-1)

Stringent request: 
relative position within a station 

must be stable at 10 µm.

Laser holographic system
to monitor stability.
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Tracking station

A new design under 
development at Liverpool.

Carbon Fiber tubes for the 
mechanical structure:

(sub ppm) 0 CTE along the 
longitudinal direction.

First prototype to be assembled 
in the next weeks.
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MUonE simulations: 
Improving resolution - tilted geometry

● Improvement mainly due to
 charge sharing between adjacent strips

● Tune the tilt angle and the digitization 
threshold to equalize the number of hits 

composed of 1 or 2 strips.

Final resolution

22 µm → ~10 µm
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Beam Test 2021-2022

● Fall 2021: parasitic beam test.
● Low beam rate (~10kHz).
● 2 modules in the MUonE station + 

2 modules in an external box.

● Summer 2022: intermittent beam test 
at the final MUonE location.

● 4 modules in the MUonE station.

● October 2022: 1 week beam test 
as main users.

● Fully equipped tracking station + ECAL.

Positive results on the thermal stability 
of the tracking system and 

the 2S modules synchronization.

2021

2022
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Test Run 2023

A 3 weeks Test Run with a reduced detector 
has been approved by SPSC, to validate our proposal.

● Pretracker +
● 1 station + 
● ECAL 

Main goals:
● Confirm the system engineering.
● Monitor mechanical and thermal stability.
● Test the detector performance.
● Assess the strategy for the systematic errors.
● Measure Δαlep(t) with a few % precision.

10 cm
100 cm

Test the
analysis strategy
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Sensitivity to Δahad(t) 

Δαhad(t) parameterization: inspired from the 1 loop QED contribution at t < 0:

Δαhad(t) < 10-3

2 parameters:
K, M

muon angle electron angle
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Calculation of aµHLO 

Extraction of Δαhad(t) through a template fit to the 2D (θe, θµ) distribution

aµ
HLO = (688.8 ± 2.4) × 10-10

Input value: 

aµ
HLO = 688.6 × 10-10

Simulation 
@ final luminosity: 1.5x104 pb-1 

(0.35% stat error)

4×1012 elastic events 
with Ee > 1 GeV (θe < 32 mrad)
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Main systematics have 
large effects in the 

normalization region.
(no sensitivity to Δahad here)

Normalization 
region

Strategy for the systematic effects

Signal 
region

Normalization region
Large statistics here.

● Multiple scattering model.
● Detector angular resolution.
● Beam energy scale. 
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Expected agreement 
data/MC on the core of 
multiple scattering: ± 1%

Example: systematic error
on the multiple scattering

Normalization region

Normalization region

G. Abbiendi et al JINST (2020) 15 P01017 PDG parameterization:

x = target thickness

X
0
 = radiation length

https://iopscience.iop.org/article/10.1088/1748-0221/15/01/P01017
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Strategy for the systematic effects

Promising strategy: 
● Study the main systematics in the 

normalization region. 
● Include residual systematics as nuisance 

parameters in a combined fit with signal.
● MESMER MC for the template fit 

+ Combine tool to fit 
the nuisance parameters.

● Kref = 0.137

● shift MS: +0.5%

● shift intr. res: +5%
● shift Ebeam: +6 MeV

Next steps:
• Test the procedure using the 

FullSim (TB23 Δαlep(t) ideal for this).
• Improve the modelization 

of systematic effects.
• Move to the final statistics.
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Time schedule

● Intense Beam Test activities in 2021-2022: 
first experience with detector in real beam conditions.

● 3 weeks Test Run in 2023: 
proof of concept of the experimental proposal 
using 1 tracking station + ECAL. 

● Towards the full experiment: 5-10 stations before LS3 (2026). 
2-4 months data taking: first measurement (few % precision) of          .

● After LS3 (>2029) 3 years of running with the full apparatus (40 stations) 
to reach the aimed precision on          (~0.3% stat, same syst)

aµ
HLO

aµ
HLO
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MUonE activity in Liverpool

● Hardware:
● Mechanical structure made of Carbon Fiber

(0 CTE in the longitudinal direction).

● Simulation & Analysis:
● Upgrade of the Beam Magnet Spectrometer (BMS) at the M2 

beamline → precise determination of the beam energy profile.
● Signal contamination due to pair production background.
● Development of the final analysis strategy to extract Δαhad. 

MUonE group:
T. Bowcock, J. Carroll, G. Casse, S. Charity, K. Ferraby, K. Hennessy, 
F. Ignatov, T. Jones, R. Pilato, J. Price, K. Rinnert, T. Smith, T. Teubner, 
G. Venanzoni, J. Vossebeld, C. Zhang.
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BACKUP
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x < 0.936tpeak ~ -0.108 GeV2 xpeak ~ 0.92
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● 160 GeV muon beam 
on atomic electrons.
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2 parameters:
K, M

Inspired from the 1 loop QED contribution of lepton pairs and top quark at t < 0

Dominant behaviour in the 
MUonE kinematic region:

Δahad parameterization

Allows to calculate 

the full value of aµ
HLO

Other possible parameterizations 
are being investigated
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Tracker: CMS 2S modules

5 cm5 cm
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● Each module is divided in two 
independent halves. 

● Each half is composed of 
1016 strips, 5 cm long.

● Each half is read-out by a CIC 
(Concentrator Integrated 
Circuit).

● A single half is divided in 8 
sectors. Each sector is read-out 
by a CBC (CMS Binary Chip).

● Data from the CBCs are 
transmitted to the 
corresponding CIC, then sent 
to the back-end.
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Tracker: CMS 2S modules
 

Two sensors reading the same coordinate:
● Background suppression from single-sensor hits. 

● Rejection of large angle tracks.

Stub information: position of the cluster in the seed layer + 
distance between position of correlation cluster and seed cluster (bend)

● xseed
● bend = xcorr - xseed

CMS Tracker Phase2
 Upgrade - TDR

https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf
https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf
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2S modules intrinsic resolution

Position of particles hitting the module at the boundary of two 
strips is reconstructed with higher precision (blue distribution).
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● Charge sharing: 
energy deposition 
of particles in the 
Silicon is shared 
among adjacent strips.

● Effective staggering: 
tilting a 2S module by a small angle 
will provide two measurements 
which are not redundant. 
(i.e. 25 mrad tilt = ½pitch staggering)

Tilt a 2S module around an axis 
parallel to the strip direction.

Improve the intrinsic resolution
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Improving the intrinsic resolution: 
tilted geometry

Best tilt angle: 233 mrad

threshold: 6000 e- (6σnoise)

Tolerances in the assembly of the 
2S modules and the mechanical structure:

expected resolution is 8 – 11 µm 
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Tolerance in the mechanical 
structure: 233 ± 6 mrad

2S modules intrinsic resolution

Expected resolution: 
8 – 11 µm Tolerance in the 2S modules 

assembly: ± 50 µm
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Beam Test 2021

First demonstration 
of the full DAQ chain 

with the M2 
asynchronous beam.

● Continuous stream of 40 MHz data 
from 2S modules captured to disk.

● Reliable readout over >6h runs.

● 30 TB of raw data collected to disk, 
~1 TB after empty packets removal 
(low beam rate).

● Demonstration of 2S modules 
time synchronization.
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Thermal stability 
of the tracking station

T experimental hall

T enclosure

T 2S modules

T mechanical structure

T refrigerator

ΔT mechanical 
structure ~ 1°C

Day/night variations can be reduced 
by installing the apparatus 

in a controlled environment.
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Beam Test 2021-2022

First demonstration 
of the full DAQ chain 

with the M2 
asynchronous beam.

● Continuous stream of 40 MHz 
data from 2S modules captured 
to disk.

● Demonstration of 2S modules 
time synchronization.
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Test Run:
expected sensitivity on Δahad(t) 

Expected luminosity for the Test Run: LTR = 5 pb-1 ~109 events with Ee > 1 GeV
(θe < 32 mrad)

Low sensitivity to the 
hadronic running (Δahad(t) < 10-3)

K = 0.136 ± 0.026 
(20% stat error)

We will be sensitive to the 
leptonic running (Δalep(t) < 10-2)
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±10% error on the 
angular intrinsic resolution.

Normalization region

Normalization region

Systematic error
on the angular intrinsic resolution
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Systematic error
on the muon beam energy

Accelerator division provides 
Ebeam with O(1%) precision 
(~ 1 GeV).
It must be controlled by a 
physical process.

Effects of such shift on Ebeam 
can be seen in our data in 1h 
of data taking per station.

G Abbiendi Phys. Scr. (2022) 97 054007

https://iopscience.iop.org/article/10.1088/1402-4896/ac6297
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Framework used for the analysis

● NLO MonteCarlo generator: MESMER
● Allows to change the muon beam energy and simulate 

the beam energy spread.

● C++ fast simulation to include detector effects:
● Multiple scattering effects in the target.
● Angular intrinsic resolution.
● Effects applied to (θe, θµ) taken from the NLO generator: 

track reconstruction effects are currently neglected.
● Further effects to be included: MS non-Gaussian tails, 

background effects, MS in the silicon sensors.

https://github.com/cm-cc/mesmer/
https://gitlab.cern.ch/muesli/nlo-mc/mue
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Analysis workflow

● Combine performs a likelihood fit 
to the nuisance parameters for 
each template.

● Obtain the profile likelihood 
as a function of K.

● Best fit value of K is determined 
by parabolic interpolation 
among the template points.

● Nuisance parameters values 
for K = Kbest fit are obtained by 
interpolation among the values 
obtained in the first step.

Statistical fit @L
TR

 = 5 pb-1
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Promising strategy: staged approach.

1.  Use a small fraction of data to refine 
   the knowledge of the main sources 
   of systematic error with respect to the
   initial modelization.

2.  Include the residual systematics as
   nuisance parameters in a combined 
   fit with the signal parameter on the 
   entire dataset.

Currently tested on the Test Run statistics 
including the main systematic errors.

Analysis workflow
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Testing the procedure

Generate a pseudo-data sample introducing 
shifts in the main sources of systematic error 

with respect to the expectations.

Are we able to determine precisely K and the 
nuisance parameters using this analysis strategy?
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Step 1: identify 
the main systematic effects

● Template fit as a function of Ebeam.

● µMS: nuisance parameter for systematics 
on the multiple scattering. 

● µIntr: nuisance parameter for systematics 
on the angular intrinsic resolution.

● ν: nuisance parameter for systematics 
on the normalization.

Similar results also for different selection cuts.

1h of data taking 
per single station.

Allows to assume a 
fixed model for Δahad.
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Update the knowledge on the 
sources of systematic error

Exploit results obtained in step 1 to 
refine the knowledge on the sources 

of systematic error.

Use this improved modelization to perform the 
combined fit to K and the residual systematics.
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Simultaneous fit signal + 
nuisance parameters @LTR

If the systematics are not 
taken into account in the fit...

If the nuisance parameters are 
introduced in the fit procedure...
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Tracking station

3 INVAR stations assembled at 
INFN Pisa.
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Laser holographic system

● Compare holographic images of the same 
object at different times.

● Fringe pattern is related to deformations 
of the mechanical structure.

● Developed at INFN Trieste, 
tested in 2022 at CERN.

Initial state
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Calorimeter

● 5x5 PbWO4 crystals:
area: 2.85x2.85 cm2 , length: 22cm (~25 X0).  

● Total area: ~14x14 cm2.
● Readout: APD sensors.

Beam Test: July 2022, 
CERN East Area.

● Electrons in range 1-4 GeV.
● Overall debug of detector, DAQ.
● Absolute energy calibration, 

energy resolution.
● Calorimeter installed downstream 

the tracking station at 
M2 beam line in September.
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DAQ architecture

● Test Run: read all data with no event selection.
● Information will be used to determine online selection 

algorithms to be used in the Full Run.
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Backgrounds

MESMER GEANT4
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GEANT4 simulations

Tracker only

Tracker + ECAL > 1 GeV

Signal: elastic scattering
Background: e+e- pair 
production

TB2017 (resolution ~7µm)

Tracker only

Signal: elastic scattering
Background: e+e- pair 
production

Tracker + ECAL > 1 GeV

TB2018 (resolution ~40µm)
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Multiple scattering:
results from TB2017

Multiple scattering effects of electrons with 12 and 20 GeV on 
Carbon targets (8 and 20 mm)

Main goals: 

● to determine a 
parameterization able to 
describe also non Gaussian 
tails

● to compare data with a 
GEANT4 simulation of 
the apparatus
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Results show a ~1% 
agreement between data and 

MC for the Gaussian core

Multiple scattering:
results from TB2017
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