

ATLAS Upgrade

Particle Physics Annual Meeting 2023

What are we doing at Liverpool?

What are we doing at Liverpool?

- Module production for both the ITk barrel strip detector and the endcap pixel tracker
 - 10000 strip hybrid reception testing
 - 3000 hybrids ASIC loading and wire bonding
 - ~580 strip modules
 - ~500 pixel modules
- Mechanical support structures for both detectors
 - 100 strip stave cores
 - 6 CF half-cylinders
- The full integration of one of the ITk's pixel endcaps
- Coordination of the development of the overall core ITk software

Who are we?

- Paul Dervan
- Ashley Greenall (lead strip hybrid designer)
- Helen Hayward (PI, Strip SW Co-ordinator, UK pixel WP20 lead, pixel sys test co-ordinator)
- Tim Jones (UK pixel WP20 lead)
- Jon Taylor (UK pixel WP13 lead, international pixel module activity co-ordinator)
- Sven Wonsak (International Strip Module Co-ordinator)
- John Carroll
- Warren Jones
- Manex Ormazabal
- Phil Timko
- Carl Gwilliam
- Sergey Burdin

Welcome:

- David Vazquez Furelos
- Matt Brown
- James Coleman-Mills

Continued thanks to:

Liam Boynton, Dave Sim, Tom Lee, AML / DFF / LSDC, Mike Lockwood...

Students:

Bhupesh Dixit, Conor McPartland, Ting Lee, James Smith

HL-LHC schedule

Strip modules

Strips modules

- Barrel Hybrid Production Readiness Review (PRR) passed (January 2023)
 - Allowed restart of barrel hybrid flex production
 - 20k circuits to be procured over the next 3yrs
- Liverpool responsible for the initial QC of all barrel hybrid flex circuits
 - Involves many QC steps, checking suitability for wirebonding, PTH/VIA integrity and inter-layer delamination by exposure to thermal stressing – using dedicated test coupons
 - QC of all hybrid flexes after SMD attachment that will be used in the UK/China cluster, responsibility for QC of 10k circuits
- During production, will receive one batch of 448 bare hybrid flexes (64 arrays) every month
 - Production flexes start arriving May 2023 with a completion date of June 2026
 - With 50% of circuits shipped to the USA

Strips modules

- Barrel Strip Module PRR happened last week
 - Preliminary feedback from reviewers was positive to start production hybrid assembly
 - UK sites still required to finish the pre-production
 - Module production to start at a slow pace after getting more measurements
- In 2022 discovered "cold noise" showstopper
 - Excess noise across many channels at low temperature
 - Mitigation strategies have been explored
 - Vibrating ceramic capacitors on powerboard most likely cause circa 2nm movement (cf laser vibrometer)
- Whilst Endcap modules don't show cold noise
 - Further investigations ongoing (including barrel powerboard made by endcap vendor)
- In addition, a new glue had to be qualified because the current baseline glue was discontinued
- Production starts with long-strip modules:
 - Using glue Eccobond F112 (True Blue) and standard glue thickness

Strip mechanics

Strip Stave Core Production

• Sub-assembly / cooling loop assemblies

- This is the first component that is constructed during the build of a stave core
- The assembly consists of two layers of thermally conductive foam that are bonded together using graphite loaded glue to assist in the heat transfer between the two mating layers
- Also bonded into this sandwich is the titanium cooling loop that provides cooling along the length of the stave core
- Liverpool is currently updating the assembly tooling to prepare for production
- Liverpool will manufacture the UK's supply of cooling loop assemblies (about 200)

Liverpool's sanding procedure

- Recently Liverpool shared its sanding procedure for sanding the carbon fiber honeycomb that fills the void between the cooling loop and the rest of the stave core structure
- Previously this honeycomb was machined to the correct depth however this required a lot of time and would require large CNC machines to be tied up to this specific purpose
- By adopting Liverpool's sanding procedure, the tight surface tolerances where still maintained without having the time commitment of setting up large CNC machines

Stave Core production

 Stave core manufacture is scheduled to start in July 2023 and Liverpool have to construct about 200 cooling loop assemblies and 100 stave cores by May 2026

Pixel modules

Organisation

- Pixel modules jointly organised in the UK by Liverpool and Oxford
- UK responsibilities divided
 - Edinburgh: Hybrid QC
 - Lancaster: Sensor QC
 - Glasgow: Module building and testing; hybridisation (flip-chip)
 - Oxford: Module building and testing, module loading
 - RAL: Module loading and hybridisation (flip-chip)
 - Liverpool: Module building and testing, parylene coating
- UK required to build enough pixel modules for one endcap ~1500 quad modules over ~2 years
- Additional modules now required due to Russian commitments being re-distributed
 - UK module building (and testing) rate increased from 6.5 to 7 modules/week/site
- All module building sites are now beginning the site qualification process

Particle count, temperature and relative humidity are stable over a 14 day period in class 5 and class 7 labs

Module assembly and testing

- Pre-production tooling has arrived in the UK (designed and manufactured in Germany)
- First assemblies on glass and mechanical silicon for glue distribution and wire bonding trials currently underway
- Radiation hard polymer layer deposited to prevent HV discharge and bump bond delamination
- First digital modules under test

Masking applied to ITk module

Pixel mechanics

Endcap Pixel mechanics

- Liverpool is responsible for overall 3D CAD modelling of Outer Pixel Endcap for ITk upgrade
 - This work has to be complete for the Final Design Review in September 2023
 - In addition to the 3D geometry Liverpool will have to play a leading role in qualifying the mechanical design of the global support structures (e.g. assessing loads, checking stability, assembly tolerances, safety-factors against structural failure)
- Liverpool also has to design and manufacture the 12 half-cylinders (6 for UK and 6 for IT)
 - We are currently manufacturing a Layer 4 prototype which will be used at Frascati to qualify the integration tooling

L4 half-shell mock-up mounted in assembly

System test

System test

- Liverpool is currently testing a prototype of half ring for the middle half endcap
- Pixel modules mounted in a half ring and connected together through a Serial Power Chain (SPC)
- The LV and HV connections checked in side A
- Readout of the modules were successfully tested individually
 - Currently testing multiple module readout

System test

# of devices	LV (V)
1	2.375
2	3.992
3	5.613
4	7.249
5	8.888
6	10.503
7	12.069
8	13.685
11	18.4

 LV applied to an increasing number of sensors in the SPC to reach 4.6 A on operation

 Leakage current of all the modules in the SPC at different temperatures

 Threshold distribution for a module at different stages of production

Summary

- Many activities for the ATLAS phase II upgrade at Liverpool
 - Strip modules
 - Strip mechanics
 - Pixel modules
 - Pixel mechanics
 - System test
- All moving forward!
- In addition to hardware, Liverpool also heavily involved in production database and ITk simulation activities
- Many thanks to Qualification Task students including Bhupesh Dixit who is currently working on "Implementing Masking of ITk Pixel and Strip Modules and Studying Noise Modelling"

