FASER

ForwArd Search ExpeRiment

Monica D'Onofrio, Carl Gwilliam, Lottie Cavanagh

18th May 2023 Liverpool HEP Annual meeting

FASER Experiment and Collaboration

- New LHC run-3 experiment located 480 m downstream of ATLAS in Ti12 side service tunnel
 - Exploiting large LHC collision rate + forward-peaked light hadron production
 - Combination of LHC magnets and 100 m of rock shield most background

Physics Motivation

- Designed to search for light, weakly interacting particles from ATLAS IP
- pp \rightarrow LLP, LLP travels ~480m, LLP \rightarrow ee, $\gamma\gamma$, $\mu\mu$, ...
- Probes large range of BSM models that predict long-lived particles
 - Dark photons, ALPS, HNL, B-L, ...
- Complementary to ATLAS/non-collider
 - Sensitivity to unique parameter space

10⁴

- FASERv adds neutrino program
 - First observation of collider vs
- Cross-section measurement in E range from ~ 100 GeV to ~1 TeV
 - Highest E man-made neutrinos
 - Unconstrained phase space region

FASER Detector

FASER Operations 12

 50
 FASER

 40
 Preliminary

 40
 FASER Recorded

 FASER Necorded
 FASER Necorded

 30
 Calo Filters Installed

 20
 Total Delivered: 38.5 fb⁻¹

 10
 Total Recorded: 37.0 fb⁻¹

 0
 10

 0
 13/09

 28/06
 13/09

 29/11

 Day in 2022

ATLAS

 Successfully operated throughout 2022
 All detector components performing excellently Recorded 96.1% of delivered lumi with 1.3% DAQ dead-time

Dark Photon (A') Analysis

- Simple and robust A' \rightarrow e⁺e⁻ selection, optimised for discovery
 - Signal efficiency of ~40% across phase-space region sensitive to
 - Expected background, dominated by neutrino interactions, is $(2.02 \pm 2.4) \times 10^{-3}$
 - 1. Collision event with good data quality

4. Timing and preshower consistent with ≥ 2 MIPs

Leading Liverpool involvement from end-to-end.

- Carl PC and A' analysis contact
- See Lottie's talk for more details

2. No signal (< 40 pC) in any veto scintillator

3. Exactly 2 good fiducial tracks

- p > 20 GeV and r < 95 mm
- Extrapolating to r < 95 mm at vetos

5. Calo E > 500 GeV

Dark Photon Results

10

- in previously unexplored parameter space!
 - Probing region interesting from thermal relic target

10²

m_{A'} [MeV]

Neutrino Analysis

Signal (>40 pC) in other 3 vetos

3.

Timing and preshower consistent with ≥1 MIP

Mainly neutral hadrons

Neutrino Results

Neutrino candidate

- Upon unblinding find 153 events with no veto signal
 - Just 10 events with one veto signal
- First *direct* detection of collider neutrinos!
 - With signal significance of 16σ
 - Accepted by PRL arXiv:2303.14185

Neutrinos in FASERv

- Analysis of FAESRv emulsion detector underway
 - Have multiple candidates including highly v_e -like CC event

Forward Physics Facility (FPF)

FASER(v)2

- On-axis spectrometer with 4 Tm superconducting magnet
 - Longer: increased target and decay volume (L =1.5 m \rightarrow 10 m)
 - Wider: increased sensitivity to HF production (R = 0.1m \rightarrow 1 x 3 m)

• Wider LLP physics program

• Probing up to higher mass

Benchmark Model	FASER	FASER 2
Dark Photons	\checkmark	√
B - L Gauge Bosons	V	\checkmark
$L_i - L_j$ Gauge Bosons		
Dark Higgs Bosons	—	√
Dark Higgs Bosons with hSS	—	\checkmark
HNLs with e	—	√
HNLs with μ	-	√ √
HNLs with τ	√ 1	\checkmark
ALPs with Photon	\checkmark	\checkmark
ALPs with Fermion	_	\checkmark
ALPs with Gluon	\checkmark	\checkmark
Dark Pseudoscalars		✓

- Tracker: LHCb-like SciFi detector
 - Potential higher resolution silicon detector for 1st layer / central region
- Calorimeter: IDEA-like dual-readout
- Neutrino: 20x larger W + emulsion
 - ~50 nm intrinsic position resolution

Summary + Outlook

- FASER successfully took data in first year of Run 3
 - Running with fully functional detector & very good efficiency
- Excluded A' in region of low mass and kinetic mixing
 - Probes new territory in interesting thermal-relic region
- Reconstructed ~150 ν_{μ} CC interactions in spectrometer
 - Opens new window for high-energy v study
- Liverpool played a major role across many areas
 - From data-taking & software development to final analysis
- More searches and neutrino measurements to come
 - Including first results from emulsion detector
 - Looking forward to up to 10x more LHC run-3 data
- Proposal for dedicated HL-LHC forward physics facility
 - Liverpool potentially interested in development of tracker
 - Discussing with other UK institutes towards Sol to STFC

Backup Slides

Detector Performance: Trigger + DAQ

- DAQ running smoothly up to 1.3 kHz with deadtime only 1.3%
 - Only two stops in data-taking due to DAQ failures

Detector Performance: Trigger + DAQ (2)

- Total trigger rate falls off faster than luminosity profile during run
 - But coincidence trigger rate flat wrt lumi

Detector Performance: Veto Scintillators

- Veto efficiency measured extrapolating tracks triggered by timing scint. to corresponding layer
 - No requirement on other scintillator layers
 - Layer efficiencies found to be uncorrelated
 - All layers found to have inefficiencies $< 2 \times 10^{-5}$

Normalised # of events

10

10⁻²

10^{-3 ⊥}

10⁻⁴

10⁻⁵ ⊧

10^{-6 ⊨}

 10^{-8}

FASER

50

Detector Performance: Tracker

• Tracker fully timed in wrt LHC clock

<0.5% dead/noisy strips (inefficiency at edges expected)

Detector Performance: Alignment

- Tracker aligned using iterative local χ^2 method
 - Validated using simulation with misalignment
- Currently only aligning two most sensitive parameters
 - Vertical shift and in-plane rotation
- Aligned residuals close to ideal geometry simulation

Module ID

Detector Perf.: Timing and Calo

- Calorimeter resolution measured in test beam
 - Better than 1% at high energy
- Precision timing of both scintillator and calorimeter

Detector Performance: Emulsion

- Track multiplicity and angular distribution measured in initial partial FASERv emulsion
 - Consistent with FLUKA simulation
- Excellent hit resol (0.2 µm) after layer alignment

Dark Photon Search

- Several new physics models propose a hidden sector
 - With a mediator acting as a portal to the SM
- One of best motivated is extra U(1) symmetry
 - Gives rise to additional vector field: dark photon (A'), weakly coupling to SM via kinetic mixing (ε) with SM γ
- MeV A's produced mainly in meson decays at LHC

$$\underset{A'}{\pi^0 \cdots} \qquad B(\pi^0 \to A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \to \gamma\gamma)$$

• FASER targets small ε, where A' has long decay length

$$\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right]$$

Below 2m_µ A' has 100% decay to e⁺e⁻ pair

$$\mathcal{L} \supset \frac{1}{2} m_{A'}^2 A'^2 - \epsilon e \sum_f q_f \bar{f} A' f$$

Dark Photon Signal

- A' \rightarrow e⁺e⁻ decays in FASER volume simulated with FORESEE
 - π^0 and η via EPOS-LHC generator
 - Subdominant dark bremstrahlung via FWW
- Generator uncertainty from difference to QGSJET/SIBYLL

1.0

Decays per Bin 90

0.4 of

Number o

Baseline 1.5

ទ្ឋ 1.0

 $\Delta N = 0.15 + (E_{A'}/4 \text{ TeV})^3$

 $\overline{N} = \frac{1}{1 + (E_{A'}/4 \text{ TeV})^3}$

- Parameterised based on A' energy
- **Experimental uncertainties**
 - Tracking efficiency
 - 15% for close-by tracks
 - Estimated from overlay
 - Calo E scale
 - 6% at 500 GeV
 - Cross-checked with E/p
 - Momentum scale/resol.
 - 5% each
 - Negligible effect

Dark Photon: Event Display (1)

Calorimeter Energy: 645.2 GeV Momentum: 420.4 GeV, 21.5 GeV

• Simulated dark photon event

Dark Photon: Event Display (2)

Dark Photon: Signal Acceptance x Efficiency

• Signal acceptance for A' produced in IP1

ω

Kinetic Mixing

• And decaying in FASER decay volume

• Efficiency of calorimeter E > 500 GeV

• For A' decaying in FASER decay volume

Note: FASER solid angle coverage only ~10⁻⁸

Dark Photon: Timing Scintillator Selection

• Timing cut of 70 pC is ~100% efficiency for signal

• Supresses a large fraction of data, which are predominantly single-track events

Dark Photon: Cut Flow

- Efficiency of analysis selection for data and example signal
 - Note the data was preselected to have \geq 1 track (no quality cuts) in the event
- Overall signal efficiency ≈ 40 %
 - While reducing background to 0

	Data		Signal ($\varepsilon = 3 \times 10^{-5}, m_{A'} = 25.1 \text{MeV}$)	
Cut	Events	Efficiency	Events	Efficiency
Good collision event	151750788		95.3	99.7%
No Veto Signal	1235830	0.814%	94.0	98.4%
Timing/Preshower Signal	313988	0.207%	93.0	97.3%
$\geq 1 \text{ good track}$	21329	0.014%	85.2	89.2%
= 2 good tracks	0	0.000%	44.5	46.6%
Track radius $< 95 \text{ mm}$	0	0.000%	40.4	42.3%
Calo energy $> 500 \text{ GeV}$	0	0.000%	39.7	41.6%

Dark Photon Backgrounds (1)

• Veto inefficiency

- Measured layer-by-layer via muons with tracks pointing back to vetos
- Layer efficiency > 99.998%
- 5 layers reduce exp. 10⁸ muons to negligible level (even before cuts)

• Non-collision backgrounds

- Cosmics measured in runs with no beam
- Near-by beam debris measured in noncolliding bunches
- No events observed with ≥1 track or E(calo) > 500 GeV individually

Dark Photon Backgrounds (2)

• Main background is from neutrino interactions

- Primarily coming from vicinity of timing detector
- Estimated from GENIE simulation (300 ab⁻¹)
 - Uncertainties from neutrino flux & mismodelling
- Predicted events with E(calo) > 500 GeV

 $N = (1.8 \pm 2.4) \times 10^{-3}$

- Neutral hadrons (e.g. K_s) from upstream muons interacting in rock in front of FASER
 - Heavily suppressed since:
 - Muon nearly always continues after interaction
 - Has to pass through 8 interaction lengths (FASERv)
 - Decay products have to leave E(calo) > 500 GeV
 - Estimated from lower energy events with 2 or 3 tracks and different veto conditions

 $N = (2.2 \pm 3.1) \times 10^{-4}$

Total background prediction

 $N = (2.02 \pm 2.4) \times 10^{-3}$

Dark Photon: Neutral Hadron Background Details

- Select 3-track events where muon produces two other particles
 - A minority of these are neutral hadrons (Ks) + continuing muon (assumed to have highest momentum)
- Look at number of 3 track events with 100 < Ecalo < 500 GeV
 - Compared to number of 2 track events (muon missed) that don't pass the veto with Ecalo < 100 GeV
- Use this to estimate # events with Ecalo > 500 GeV where muon is not seen
 - Assuming E spectrum of neutral hadron is same whether muon is seen or not
- However, most of these are y conversions in veto material that would fail event selection
 - Removed by E/p < 0.5 for two-track system (i.e. without muon)
 - But this biases Ecalo \rightarrow use simulated two-track p_z to estimate events with Ecalo > 100 or 500 GeV
- From 3-track events in data strong evidence that most Ks decay in FASERv and fire veto
 - Hence scale the neutral hardon events with Ecal > 500 GeV by fraction of 3-track events decaying after veto \rightarrow (2.2 ± 3.1) x 10⁻⁴

Dark Photon: Systematic Uncertainties Summary

- Complete list of systematic uncertainties and their impact on the signal yield
 - Numbers in parenthesis are the effect on signal in previous unexcluded FASER reach

Source	Value	Effect on signal yield
Theory, Statistics and Luminosity		
Dark photon cross-section	$\frac{0.15{+}(E_{A'}/4{\rm TeV})^3}{1{+}(E_{A'}/4{\rm TeV})^3}$	15-65% (15-45%)
Luminosity	2.2%	2.2%
MC Statistics	$\sqrt{\sum W^2}$	1-3%~(1-2%)
Tracking		
Momentum Scale	5%	< 0.5%
Momentum Resolution	5%	< 0.5%
Single Track Efficiency	3%	3%
Two-track Efficiency	15%	15%
Calorimetry		
Calo E scale	6%	0-8%~(<1%)

Dark Photon: Calo Energy Scale

• Calorimeter energy scale and uncertainty evaluated based on test beam data and in-situ MIP calibration

- Validated using conversion events (μ with e⁺e⁻ pair)
- E/p in data and MC agrees within 6%

Dark Photon: Tracking Systematics

- Single track efficiency studies in muons events with track segments found in each station
 - 98.4% in data with data/MC agreement at 1.5% level
- Tracking efficiency lower for two close by tracks (~60%) \rightarrow studied in two ways:
 - 1. Overlaying hits from 2 single track events in either data or MC and measuring efficiency to find 2 tracks
 - Correct MC by ~15% difference and conservatively apply full correction as a MC systematic
 - 2. Conversions and delta-ray events where require 1 less track than needed (i.e. 3 or 2 respectively)
 - With additional track segments + preshower/calo signals consistent with additional EM signal

Dark Photon: Additional Limits

- Limits including recent prelim NA62 results
 - Partially overlaps with FASER exclusion

• Alternative limit plot showing individual previous limits available from DarkCast

• Note FASER limits very similar at 95% CL and 90% CL

Collider Neutrinos

- Neutrinos produced copiously in decays of forward hadrons
 - Highly energetic (TeV scale) \rightarrow high interaction cross section
- Extends FASER physics program into SM measurements
 - Targets measurement of highest energy man-made neutrinos
 - Energy range complementary to existing neutrino experiments

For 35 fb ⁻¹	Ve	ν _μ	ντ
Main source	Kaons	Pions	Charm
# traversing FASERv	~10 ¹⁰	~1011	~10 ⁸
# interacting in FASERv	≈200	≈1200	≈4
		PRD 1	04, 113008

(×10⁻³⁸ cm²/GeV) energy ranges of (×10⁻³⁸cm²/GeV) Ve v_{μ} V_T 0.9 accelerator data oscillated v, measurements IceCube $v_{\tau}, \overline{v}_{\tau}$ \dashv SK v_r, \overline{v}_r \leftarrow OPERA v_{z} E53 v (×10⁻³⁸ cm²/GeV) 70 cm²/GeV) 70 cm²/GeV) 0 IceCube (Aug ຟຼ໌ ວີ0.5 ୴_{>0}.. DONUT v_{e}, \overline{v}_{e} DONUT $v_{\tau}, \overline{v}_{\tau}$ 0.4E E53 🟹 **FASER**_V FASERv v_{e} spectrum (a.u.) FASERv 0.3E 0.3 v_{τ} spectrum (a.u.) v., spectrum (a.u.) ₩ 0.2 0.2 0.3 0.1 0. 0. 0 10^{2} 10^{3} 10^{2} 10^{3} 10^{4} 10⁵ 10^{2} 10^{3} 10⁶ 10⁴ 10⁴ E, (GeV) E, (GeV) E_v (GeV)

Study at colliders originally proposed by Rújula and Rückl in 1984!

Neutrinos: Event Display

FIG. 1. Illustration of the FASER detector with a muon neutrino undergoing a CC interaction in the emulsion target.

Neutrinos: Geometric Background

- Measure geometric background by counting # events in SB and scale to SR
- SB defined to enhance muons missing FASERv veto that still give a track in the spectrometer
 - Single IFT segment in 90 < r < 95 mm anulus
 - Loosened momentum requirement
 - No FASERv veto radius requirement
 - Negligible neutrino background
- Fit mom. to extrapolate to p > 100 GeV
- Scale to rate of events with r_{VetoNu} < 120 mm
 - 0 events so use 5.9 events as 3σ upper limit
- Scale from anulus to full acceptance
 - Using large angle muon simulation
- Expect 0.08 ± 1.83 events

Neutrinos: Neutral Hadron Background

• Simulated 10⁹ μ^+ and μ^- events

- Start from FLUKA Spectra
- G4 propagation through last 8 m of rock
- Number of hadrons with p > 100 GeVreaching FASER ≈ 300 .

• Estimate fraction of these passing event selection

- Simulate kaons (Ks/Kl) and neutrons with p > 100 GeV following expected spectra
- Most are absorbed in tungsten with no highmomentum track → only small fraction pass

• Scale neutral hadrons produced by muons reaching FASER by fraction passing selection

• Predicts N = 0.11 ± 0.06 events

Neutrinos: fit

- Fit to events with 0, 1 or 2 front veto hits
 - Splitting those were 1 hit is in 1st/2nd layer
- Construct likelihood as product of Poissions
 - With additional 3 Gaussian constraints for Neutral hadron background, Geometric background and the extrapolation factor

- Determine number in each category
 - Along with inefficiencies of 2 forward vetos, which are found to be close to expected vals.

Inefficiencies: 6 / 9 x 10⁻⁸ 1 - p1 = 99.999994(3)%1 - p2 = 99.999991(4)%

- n_0 : A neutrino enriched category from events that pass all event selection steps.
- n_{10} : Events for which the first layer of the FASER ν scintillator produces a charge of >40 pC in the PMT, but no signal with sufficient charge is seen in the second layer.
- n_{01} : Analogous events for which more than 40 pC in the PMT was observed in the second layer, but not in the first layer.
- $n_2:$ Events for which both layers observe more than $40\,\mathrm{pC}$ of charge.

Category	Events	Expectation
n_0	153	$ u_ u + u_b \cdot p_1 \cdot p_2 + u_{ m had} + u_{ m geo} \cdot \eta_{ m geo}$
n_{10}	4	$\nu_b \cdot (1-p_1) \cdot p_2$
n_{01}	6	$ u_b \cdot p_1 \cdot (1-p_2)$
n_2	64014695	$\nu_b \cdot (1-p_1) \cdot (1-p_2)$

Neutrinos: Additional Distributions

- Number of clusters in IFT depends on interaction point
 - Further forward interactions have less clusters
- Neutrino tracks have larger angular range
 - Compared to n₂ background events

FASER Collaboration

• 87 members across 24 institutes from 10 countries

FASER Publications

- The FASER Detector: <u>arXiv:2207.11427</u>
- The FASER W-Si High Precision Preshower Technical Proposal: <u>CERN Document Server</u>
- The tracking detector of the FASER experiment: <u>NIM 166825 (2022)</u>
- The trigger and data acquisition system of the FASER experiment: <u>JINST 16 P12028 (2021)</u>
- First neutrino interaction candidates at the LHC: <u>PRD 104 L091101 (2021)</u>
- Technical Proposal of FASERv neutrino detector: <u>arXiv:2001.03073</u>
- Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC: EPJC 80 61 (2020)
- Input to the European Strategy for Particle Physics Update: <u>arXiv:1901.04468</u>
- FASER's Physics Reach for Long-Lived: PRD 99 090511 (2019)
- Letter of Intent: <u>arXiv:1812.09139</u>
- Technical Proposal <u>arXiv:1811.10243</u>