R&D of HV-CMOS detectors HEP Annual Meeting, 18 May 2023

Chenfan Zhang on behalf of the HV-CMOS group

Liverpool HV-CMOS Group

Ben

Chenfan

Sam

Eva

Sigrid

• Our group design advanced HV-CMOS detectors, make DAQ systems and evaluate them in lab and testbeam...

HV-CMOS: Monolithic Pixel Detectors

- Monolithic: Sensor and readout electronics in a single silicon wafer.
 - Single layer structure: low material thickness (50 μm);
 - No bump-bonding: Small pixel size (< 50 μm × 50 μm); reduced production cost (~ £100k/m²);
 - High bias voltage: fast charge collection by drift (~ 200 ps) and high radiation tolerance (5×10¹⁵ 1 MeV n_{eq}/cm²).
- The Mu3e experiment has chosen HV-CMOS pixel detectors and many others are considering them: LHCb, proton EDM, PANDA. And applications fields other than HEP experiments.

Liverpool HV-CMOS development

- RD50-MPW1: test the LF150 process, low V_{BD} (55 V) and high I_{Leak} (~ μ A).
- RD50-MPW2: high V_{BD} (130 V), low I_{Leak} (~ nA) and fast analog pixel.
- RD50-MPW3: implements large pixel matrices with advanced digital readout.
- UKRI-MPWO: first backside-only biased, high V_{BD} (> 600 V).

Liverpool HV-CMOS development

- RD50-MPW1: test the LF150 process, low V_{BD} (55 V) and high I_{Leak} (~ μ A).
- RD50-MPW2: high V_{BD} (130 V), low I_{Leak} (~ nA) and fast analog pixel.
- RD50-MPW3: implements large pixel matrices with advanced digital readout.
- UKRI-MPW0: first backside-only biased, high V_{BD} (> 600 V).
- **RD50-MPW4** and **UKRI-MPW1**: fix the issues found in their predecessors.

2023 HEP Annual Meeting, 2023/05/18, Chenfan

Measurement of RD50–MPW3

• IV measurements show its breakdown and leakage are similar to RD50-MPW2.

2023 HEP Annual Meeting, 2023/05/18, Chenfan

UNIVERSITY

Measurement of RD50–MPW3

- Beamtest at CERN SPS in October 2022. First beamtest by RD50 to evaluate HV-CMOS detector and readout DAQ designed by RD50. (HUGE amount of work!)
- high threshold used due to the high noise -> low efficiency.

2023 HEP Annual Meeting, 2023/05/18, Chenfan

• Suspect the noise is from the digital readout periphery. Try to simulate the noise.

amplifier output:

Noise simulation

• Suspect the noise is from the digital readout periphery. Try to simulate the noise.

Noise simulation

• Noise reduced after separating the power lines of pixel matrix and digital periphery.

after separating power lines:

Design of RD50-MPW4

- RD50-MPW4 submitted on Monday this week, delivery expected in Nov. 2023.
- Will be backside biased, both topside and backside biasing are possible.
- Improvements in RD50-MPW4:
 - separating power lines of the pixel matrix and noisy digital readout periphery;
 - multiple guard chip rings to increase breakdown voltage to 500 V -> better radiation tolerance.

2023 HEP Annual Meeting, 2023/05/18, Chenfan

Measurement of UKRI-MPW0

- $V_{BD} > 600$ V, the 'U' shape pixel leakage current I_{pixel} is due to the parasitic channel beneath STI.
- High ring current I_{ring} (~mA) is caused by edge defects.

• edge-TCT shows the chip is fully depleted with bias voltage > 300 V and a 50 μ m depletion width is maintained after irradiated to a radiation fluence of $1 \times 10^{16} n_{eq}/cm^2$.

UKRI-MPW0 Pixel Matrix

• Used a Sr90 source to plot the number of hits received by every pixel over a shutter window of 20 s.

²⁰²³ HEP Annual Meeting, 2023/05/18, Chenfan

UNIVERSITY

O F

Design of UKRI-MPW1

- UKRI-MPW1 submitted this week, delivery expected in Nov. 2023.
- Will be backside biased.
- Improvements in UKRI-MPW1:
 - add p-spray layer between pixels to avoid parasitic channel;
 - use multiple guard chip rings (same as RD50-MPW4) to decrease leakage current.

(details in Ben's presentation)

Summary and Next step

- Found high noise in RD50-MPW3 and high leakage current in UKRI-MPW0.
- Improvements implemented in RD50-MPW4 and UKRI-MPW1.
- Will do a beamtest on irradiated RD50-MPW3 samples in July at DESY. Will potentially test UKRI-MPW0 as well.
- Will design the DAQs for RD50-MPW4 and UKRI-MPW1 before their arrival.

