

LUX-ZEPLIN Science Run 1 WIMP Search & Liverpool Group

May 2023 Ewan Fraser

Masters student (PhD next year): Teagan Hall PhD Students: Sam Woodford, Megan Carter Postdoc as of Jan 2023: Ewan Fraser Academic: Sergey Burdin

LZ - Experiment for Direct Detection of WIMP Dark Matter

TPC Principles

Electronic Recoil (ER) and Nuclear Recoil (NR) discrimination calibration

SR1 WIMP Search Analysis

SR1 Data collection: December 2021 - April 2022

Data Selection:

- Offline Data Quality Assessment +
- □ Livetime impacting cuts
 - Hotspots, Muons, e⁻ trains

Data Analysis:

ALPACA - LZ analysis framework

Physics cuts:

- □ Single Scatter
- □ Fiducial Volume
- Thresholds and Vetoes

Data purity:

- Cuts to remove accidental single scatters
 - Random pairing of Isolated S1s & S2s

Physics Readiness Monitor

- Offline Data Quality Monitoring
- ❑ Containerised deployment on NERSC's SPIN2
 - MongoDB
 - NodeJS backend
 - Frontend using JSROOT
 - LZ Authentication + NGINX

PREMweb user

Network Diagram for Physics Readiness Monitor software stack

Physics Readiness Monitor

Offline Data Quality Monitoring:

- ID and 2D comparisons to know good runs to identify and catalogue data quality defects.
- Long term trend monitoring of physical quantities.

TPC hotspots due to extraction region grid emission.

SR1 WIMP Search Analysis

SR1 Data collection: December 2021 - April 2022

Data Selection:

- Offline Data Quality Assessment
- □ Livetime impacting cuts
 - Hotspots, Muons, e⁻ trains
- Data Analysis:
- ALPACA LZ analysis framework +

Physics cuts:

- □ Single Scatter
- □ Fiducial Volume
- Thresholds and Vetoes (Outer Detector)

Data purity:

- Cuts to remove accidental single scatters
 - Random pairing of Isolated S1s & S2s

Nuclear Recoil detection efficiency

ALPACA in Three Parts

SR1 WIMP Search Analysis

SR1 Data collection: December 2021 - April 2022

Data Selection:

- Offline Data Quality Assessment
- □ Livetime impacting cuts
 - Hotspots, Muons, e⁻ trains
- Data Analysis:
- ALPACA LZ analysis framework +

Physics cuts:

- Single Scatter
- □ Fiducial Volume
- Thresholds and Vetoes (Outer Detector)

Data purity:

- Cuts to remove accidental single scatters
 - Random pairing of Isolated S1s & S2s

Nuclear Recoil detection efficiency

Backgrounds

To determine if a WIMP has been found:

- □ Simulate backgrounds due to radioactive decays.
- □ Initial estimates based on radiassays during detector assembly.
- Constrain background using "sideband analysis".
- **G** Fit simulated background PDFs to data (PLR with constraints).

β decays + Det. ER	218 ± 36	222 ± 16
$\nu \ { m ER}$	27.3 ± 1.6	27.3 ± 1.6
¹²⁷ Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.2 ± 2.4	15.3 ± 2.4
${}^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
³⁷ Ar	[0, 291]	$52.1^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30 \mathrm{GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total	-	333 ± 17

10

Constraining Cavern Rock Gamma Background

- Expect a few WS ROI Electronic Recoils from Cavern Rock Gammas over the course of LZ's lifetime. Important background for $0\nu\beta\beta$.
 - \sim ~1/3 of counts in <u>136Xe</u> background table, significant background in <u>134Xe</u>.
- □ Measurement took place during commissioning. Empty water tank and Outer Detector.
 - Lack of shielding. kHz of rate expect from Cavern Rock Gammas (mostly low energy).
- Prior to Xe condensing, GXe target.
- GXe simulations used for signal PDFs, based on measurements of cavern rock activity.

TABLE III. Fitted and predicted rates of cavern wall radioactivities, with the former derived from Figure 5.

Predicted	Fitted	Ratio
Rate	Rate	(Fitted/
(Hz/keV)	(Hz/keV)	Predicted)
4.2 ± 1.1	2.79 ± 0.40	0.67 ± 0.20
3.9 ± 2.0	1.95 ± 0.53	0.49 ± 0.29
6.1 ± 1.4	4.51 ± 0.43	0.74 ± 0.18
	Predicted Rate (Hz/keV) 4.2 ± 1.1 3.9 ± 2.0 6.1 ± 1.4	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Found that rate predicted by simulation needed to be normalised by 0.65 ± 0.14 .

Normalisation used to constrain Science Search simulations.

SR1 Backgrounds Paper.

Backgrounds

To determine if a WIMP has been found:

- □ Simulate backgrounds due to radioactive decays.
- □ Initial estimates based on radiassays during detector assembly.
- Constrain background using "sideband analysis".
- Fit simulated background PFDs to data (PLR with constraints).

Source	Expected Events	Best Fit
β decays + Det. ER	218 ± 36	222 ± 16
$ u \mathrm{ER} $	27.3 ± 1.6	27.3 ± 1.6
¹²⁷ Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
¹³⁶ Xe	15.2 ± 2.4	15.3 ± 2.4
$^{8}B CE \nu NS$	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
³⁷ Ar	[0, 291]	$52.1^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30 \mathrm{GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total		333 ± 17

12

Outer Detector - Single Scatter Neutron Veto Efficiency

 χ^2 / ndf

0q

p1

p2

p3

- Outer Detector PMT calibrations described in LZ OD's Optical Calibration System paper
 - Single Photoelectron calibration how many photons does the OD see?
 - Measurement of PMT afterpulsing PMT health
- Energy Calibration Number of photons detected per MeV of energy
- Neutron veto efficiency:

800

400

How likely are we to veto a single scatter neutron?

PMT 820 chOcsPulseArea

Entries Mean Std Dev x^2 / ndf

Normalisation

StD of Amplification

Mean SPF

Key for reducing neutron NR background WIMP search.

3738 + 53 6753

0.9944 ± 0.0046

0.3590 ± 0.0034 0.3458 ± 0.0053

PulseArea [phd]

0.9

0.6

0.5

Preliminarv

Science Run 1 - Result

- Above the smallest tested WIMP mass of 9 GeV/c², the best-fit number of WIMP events is zero.
- Data are thus consistent with the background-only hypothesis.
- Excluding Spin-Independent WIMP-nucleon cross sections above 6.5×10^{-48} cm² at the 90 % confidence level.

 $0.0^{+0.2}$

Detector neutrons

 $30 \,\mathrm{GeV/c^2}$ WIMP

Total

14

 $0.0^{+0.2}$

 $0.0^{+0.6}$

 $333 \pm 1'$

Summary

- LZ's construction and commissioning commissioning completed Winter 2022.
- LZ's 60 liveday Science Run 1 found no evidence of WIMPs. <u>SR1 WIMP Search Result</u>.
 - Excluding Spin-Independent WIMP-nucleon cross sections above 6.5×10^{-48} cm² at the 90 % confidence level.

University of Liverpool's LZ group responsible for/participated in:

Hardware:

- Outer Detector's Optical calibration system OCS Paper
- PMT and Outer Detector installation

Software:

- LZ's analysis package: ALPACA Data analysis seminar
- Offline Data quality monitoring tool: Physics Readiness Monitor Calibration:
- Outer Detector PMT's and Energy Scale

Background constraints and analysis:

- Cavern Rock Gamma ER background <u>SR1 Backgrounds Paper</u>
- □ Neutron (NR background) Veto efficiency using Outer Detector.

LZ Timeline up to SR1

SR1 Goals and Result

Goals for SR1

- 1. Demonstrate physics capability
- 2. Demonstrate competitive sensitivity

Key Info

- 116 calendar days, 60 live days
- Stable detector conditions:
- Liquid temperature 174.1K (0.02%)
- Gas circulation at 3.3t/day
- Drift field: 193 V/cm (32kV cathode)

Outer Detector Neutron Tagging

- Neutron backgrounds with OD tag are 7.75 times larger than without
- Only 5% of non-neutron backgrounds should be OD tagged
- Fit to events passing all WIMP search cuts except OD-Veto for data driven constraint on Det. NR

<0.2 neutrons in SR1

Consistent with simulation-derived estimate of 0.06 events in 60 live days

