Developments in Water Based Cherenkov Detectors for Future Supernova Core Collapse Events

Adam Tarrant

Diffusers & WbLS for Neutrinos

- 50 kton water Cherenkov detector

Diffusers

HEP Meeting 2023

Diffusers at Super-K The UK calibration system

- Diffusers form part of the UK light injection system for Super-K
- Diffusers produce a uniform light cone with an opening angle of 40 $^\circ$
- By measuring the light seen from a known source (Diffuser), detector performance can be monitored and uncertainties reduced
- A log-likelihood fitter will extract the attenuation (z_{α}) and PMT angular response ($A(\theta)$) for super-K diffusers

•
$$PE = I_s(\theta_s, \phi_s)e^{-R/z_{\alpha}}A(\theta)\Omega(A)$$

 (R, θ)

Where the attenuation is given by

$$z_{\alpha} = a(\lambda) + b(\lambda)$$

 $a(\lambda)$ is the absorption and $b(\lambda)$ is the scattering.

Diffusers at Super-K The UK calibration system

Diffusers for BUTTON Smaller tank Bigger Problems

- Button will use the same diffusers as Super-K
- I have been developing generator for simulations of diffusers
- Data from Warwick University on diffuser profile from Super-K already added to generator
- Once completed it can be tested if attenuation can be found in a small tank

Water based Liquid Scintillator (WbLS)

Future of Cherenkov Detectors What about scintillator

 There are some advantages to a water Cherenkov detector and some advantages to scintillator detectors Cherenkov detectors (water) Liquid Scintillator

Advantages

- Great particle identification
- Can reconstruct position and energy of event

Disadvantages

- Limited by Cherenkov Threshold 0.8 MeV Expensive to buy in large quantities electron events (~3.49 MeV [1] (SK solar limit)) •
- Poor energy resolution at low energy (10MeV)
 Risk to environment and people (due to low light yield) HEP Meeting 2023

- **Advantages**
- Sensitive to low energy events
- High count rate efficiency
- **Disadvantages**

Water-based Liquid Scintillator Best of both worlds

- Why not mix water and scintillator?
- 1% Scintillator gives ~100 optical photons/ MeV [2]
- Keeps the particle identification and position for high energy events
- Useful in studies from reactor ranging and neutrinoless double beta decay to diffuse supernova backgrounds

The Attenuation of Light Doing the Dirty Work

- Scattering and Attenuation Measuring Device (SAMD)
- Want to measure the attenuation of light in WbLS to improve simulations
- Important for our simulations and systematic uncertainties

Measuring the Attenuation 410 nm WbLS

- Integrate over the peak to get intensity
- The ratio of top to bottom PMT is taken as a function of height
- Orthogonal distance regression is used to fit an exponential to the data

$$\frac{I}{I_o} = \epsilon e^{\frac{-H}{z}}$$

 This system could be used in WbLS detectors like BUTTON

Attenuation Coefficient

WbLS in BUTTON **Testing the results**

- WbLS has been added to BUTTON simulation (RATPAC) by American collaborators
- Want to confirm that fill type behaviour is as we expect
- Looking at the photon type and the time profile
- See the separation in time of the different photon types
- Can also add the SAMD attenuation measurement to the simulation

Supernova Neutrinos

Supernova Neutrinos When stars go bang 💥

- Stars ($M \gtrsim 8 M_{\odot}$) can undergo core collapse at the end of there life (making neutron stars and black holes)
- within 10 s with energy between ~10-60 MeV
- Rear event -> 1-3 SN per centry (in or galaxy (O(10) kpc))
- Next event could tell us a lot

99% of supernova energy is released in neutrinos (10⁵³ erg~10⁴⁶J~10⁶⁴ eV)

 Supernova mechanisms, Neutrino mass hierarchy, Neutrino mixing, Axion-like particle (BSM), Nucleosynthesis, Stellar evolution, Progenitor structure etc

WbLS and Supernova **Looking for Supernova Neutrinos**

- One advantage of Gd-WbLS is separation of Electron Scattering (ES) signal from the Inverse Beta Decay (IBD) signal
- This will allow for supernova pointing (angle of the neutrino is persevered in the electron)
- Currently working on separating ES from IBD signals in WbLS Detectors
- The progress of BUTTON-30(100) will help in future development of THEIA (& AIT) which would provide complementary information with DUNE & Hyper-K

el, Eur. Phys. J. C (2020) 80:416 https://doi.org/10.1140/epjc/ s10052-020-7977-8

Thank You for Listening

Back up

Detectors of the future THEIA - DUNE (SK)

HEP Meeting 2023

Eur. Phys. J. C (2020) 80:416 https://doi.org/10.1140/epjc/s10052-020-7977-8

AIT - Boulby

Result Getting it	s tab all toge	le ether	$\frac{I}{I_o} = \epsilon e^{\frac{-H}{z}}$					
Measurement	410nm		450nm		490nm		520nm	
	3	<i>Z</i> (m)	3	<i>Z</i> (m)	3	<i>Z</i> (m)	3	<i>Z</i> (m)
Water June 2022	1.051±0.004	73±8	1.155±0.004	65±4	0.746±0.001	51±2	1.79±0.01	23±1
Water Nov 2022 (Davis only)	1.103±0.005	103±14	2.219±0.004	97±5	3.83±0.05	43±6	3.483±0.005	19.6±0.2
Pope	_	188	_	108	_	66.6	_	24
WbLS Nov 2022 (Davis only)	1.183±0.005	13.4±0.2	4.38±0.02	22.0±0.5	4.06±0.01	17.3±0.2	3.77±0.01	13.3±0.2 RSITY OF
20 ZIVERPOOL								

All 4 lasers WbLS attenuation Taken Nov 2022

21

Data taken Tianqi Zhang and Davis group

