A search for lepton-flavour violating $\tau \rightarrow 3\mu$ decays with the ATLAS experiment

Conor McPartland

Carl Gwilliam, Jan Kretzschmar

Introduction

- Flavour is not a fundamental symmetry, violation observed in neutrinos and quarks
 - If violation observed in charged leptons -> evidence of beyond standard model physics
- Decay to be analysed at ATLAS $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\pm} \mu^{\mp}$
 - Standard model BR: x10⁻⁵⁵-x10⁻⁵⁶
 - Far below current detection ability
 - Current tau limits much less stringent than that of muons by approximately O(10⁴)
- Two main τ production modes in proton-^{¹/_g} protons collisions
 - Heavy Flavour (HF) e.g. $D_s \rightarrow \tau v$
 - Electroweak (EW) mainly W $\rightarrow \tau \nu$

Analysis Strategy – pt1

- Selection
 - Use a mix of 2 and 3 muon triggers to collect data
 - Apply loose preselection cuts based on di-muon mass, impact parameters and isolation related variables
 - Use MVA technique to discriminate between small signal and background
- Background

Preselection

- Mainly incorrectly identified vertices and misidentified muons
- Mass cuts to remove resonant meson background processes e.g. Ds $\rightarrow \phi \mu v$
- Use fit in data sidebands as a proxy for background

Analysis Strategy – pt2 🛓

- Signal extraction
 - Apply a fit to the three muon mass to extract signal and background yields, to either find evidence of this decay, or to impose a new more stringent limit
- Correct MC trigger efficiency by calculating trigger scale factors (current focus)
- Same approach for both HF and EW channels

MVA

1.0

0.8

0.6

0.4

0.2

0.0

0.0

AUC: 0.9944

0.2

0.4

Signal efficiency

0.6

0.8

Background rejection

5

- Several MVA types tried and optimised
 - Using XGBoost BDT to improve signal to background ratio
 - Recently re-opimised preselection cuts for both W and HF
- 17 inputs features

W ROC curve

- Vertex quality, tau displacement, tau kinematics and isolation variables
- Variables are not correlated with muon triplet mass

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.0

0.2

0.4

Signal efficiency

0.8

0.6

HF ROC curve

- Trained with signal vs sideband data
 - Training sample composed of two equal halves

Trigger Scale factor correction

- After reducing the background to signal ratio we want to extract the signal
 - Need the number of expected signal and background events -> need the trigger efficiencies
- Complex multi muon triggers with close together muons means MC not able to model well
 - Muons can have a small ΔR (relates to distance between muons). Minimum peaks at 0.06, see top plot
 - Wide spectrum of p_T (see bottom plot)
- Background is from sideband data so trigger efficiency is correct by definition
- Signals come from MC, trigger efficiency not reliable, so we need to calculate a scale factor correction
 - Main challenge for analysis

Trigger Scale factor correction

- Following other multi-muon analyses, take a factorised approach
 - Split trigger into individual trigger leg components
 - Multi-muon efficiency -> product of the single muon efficiencies for each leg and correction factors
- For di-muon case: $\epsilon_{di-muon} = \epsilon 1(p_T) \cdot \epsilon 2(p_T) \cdot C12(\Delta R)$
 - Measure p_T efficiency for each muon ($\epsilon 1(p_T)$, $\epsilon 2(p_T)$)
 - This alone does not account properly for muons that overlap with each other (close in dR) so we need a dR correction ($C12(\Delta R)$) Fit for mu4 in 2016 data
- To find the efficiency for each correction factor use a tag and probe method with muons from J/ψ
 - $\varepsilon = \frac{N(single \ \mu \ trigger matched \ probe)}{N(probe)}$

- Find yields (N) via unbinned ML fit to J/ψ mass in case where probe is either triggered or not
- Plot is for p_T correction with bins of p_T similar approach for dR

Trigger Scale factor correction

- After finding the $p_{\rm T}$ efficiency in bins of $p_{\rm T}$ and dR correction these can be used to find the trigger efficiency
- The p_T efficiency is shown in the top plot for the barrel in 2016
- The dR correction is shown in the bottom plot- for the barrel with 2015 data
- Combine these, taking into account combinatorics

 the correction for a symmetric di-muon trigger
 with our 3 signal is shown below

$$\begin{aligned} \epsilon_{2muX} = & (1 - (1 - CF_{12})(1 - CF_{13})(1 - CF_{23})) \times \epsilon_{muX,1} \epsilon_{muX,2} \epsilon_{muX,3} \\ & + CF_{12}CF_{12}CF_{13}CF_{23} \times \epsilon_{muX,1} \epsilon_{muX,2}(1 - \epsilon_{muX,3}) \\ & + CF_{13}CF_{12}CF_{13}CF_{23} \times \epsilon_{muX,1} \epsilon_{muX,3}(1 - \epsilon_{muX,2}) \\ & + CF_{23}CF_{12}CF_{13}CF_{23} \times \epsilon_{muX,2} \epsilon_{muX,3}(1 - \epsilon_{muX,1}) \end{aligned}$$

Expected Sensitivity

- Overall normalisation of signal template is treated as parameter of interest in fit
 - POI is interpreted as branching ratio
 - Use CL_S method
- Currently statistics only result without trigger scale factors
- W expected limit (stat only): 5.85x10⁻⁸
 - CMS (W) 13.0x10⁻⁸
- HF expected limit (stat only): 8.99x10⁻⁸
 - CMS (HF) 10.0x10⁻⁸
- HF result comparable to CMS but W is better
- Result will be statistics limited

Summary

- All main analysis tools in place to find limit
- Obtained an expected limit for both W and HF channels
- Before systematics expected limits look to be competitive with CMS
- Current focus:
 - Trigger scale factor calculations
- Next steps:
 - Systematics
- Aim to complete analysis at the end of the year and then start writing up thesis
- As part of LIV.DAT Started 3 day a week work placement at AIMES also continuing with analysis on other days

Backup

Signal and Background

- Signal
 - Three HF production modes

Sample	Relative rate
$pp \rightarrow D_s \rightarrow \tau v$	65%
$pp \rightarrow bb \rightarrow \tau X$	25%
$pp \rightarrow bb \rightarrow D_s + X \rightarrow \tau v + X$	10%

- Three EW production modes
- Optimise analysis for just W as it's the main signal

Sample	Relative rate
$W \rightarrow \tau \nu$	83%
$Z \rightarrow \tau \tau$	16%
$t\bar{t} \rightarrow \tau \tau X$	1%

- Background- use data sidebands as a proxy for background
 - Incorrectly identified vertices and misidentified muons
 - Resonant meson background processes e.g. $\text{Ds} \rightarrow \varphi \mu \nu$
- Use a mix of 2 and 3 muon triggers to collect data
 - Require events with three muons and momentum > 5.5 GeV, 3.5 GeV and 2.5 GeV
 - Loose preselection cuts di muon mass, p_T, eta and impact parameters etc

Triggers

• Using a combination of di- and tri-muon triggers, that vary by year:

• 2015

Trigger	Unique efficiency (%)
HLT_mu20_msonly_mu6noL1_msonly_nscan05	8.15
HLT_mu11_2mu4noL1_nscan03_L1MU11_2MU6	10.18
HLT_mu6_l2msonly_2mu4_l2msonly_L1MU6_3MU4	24.92
HLT_3mu4_bTau	1.77
HLT_2mu10	0.89

• 2016

HLT_mu20_nomucomb_mu6noL1_nscan03	4.78
HLT_mu6_nomucomb_2mu4_nomucomb_bTau_L1MU6_3MU4	17.00
HLT_mu11_nomucomb_2mu4noL1_nscan03_L1MU11_2MU6	7.12
HLT_3mu4	6.22
HLT_2mu10	1.33
HLT_mu11_nomucomb_mu6noL1_nscan03_L1MU11_2MU6_bTau	0.99

• 2017

HLT_mu11_mu6_bTau	18.39
HLT_mu6_2mu4_bTau_L1MU6_3MU4	18.53
HLT_mu11_2mu4noL1_bNocut_L1MU11_2MU6	2.29
HLT_3mu4_bTau	1.83
HLT_mu20_mu6noL1_bTau	1.10

• 2018

HLT_mu11_mu6_bTau	18.40
HLT_mu6_2mu4_bTau_L1MU6_3MU4	18.37
HLT_mu11_2mu2btrk_bTauTight_L1MU11_2MU6	2.25
HLT_mu20_mu6noL1_bTau	1.17
HLT_3mu4_bTau	1.82