MightyPix at the LHCb Mighty Tracker

Verification of an HV-CMOS pixel chip's digital readout

Sigrid Scherl

sscherl@hep.ph.liv.ac.uk

Supervisors: Dr Eva Vilella (UoL), Prof Dr Ivan Perić (KIT), Dr Karol Hennessy (UoL/CERN)

18 - 19 May 2023, Particle Physics Annual Meeting, University of Liverpool

Where am I?

- Part of the HV-CMOS group in Liverpool
- Last 1.5 years at KIT in Germany
- Asics and Detector Lab ♀
 → develops new HV-CMOS sensors
- MightyPix for the Mighty Tracker at LHCb

What am I doing?

- Participate in test beams
- Dabble in chip design
- Simulations of chip efficiency

Working Principle

Simulations

LHCb at the HL-LHC

- Upgrade towards High-Luminosity LHC
- Reach almost 10 × higher luminosity and collect up to 6 × more data
- Increased readout speed of 40 MHz bunch-crossing rate
- New software-only trigger
- New detector upgrades

Sigrid Scherl

LHCb at the HL-LHC

Detector upgrades to handle increased rate \rightarrow New hybrid tracker: *Mighty Tracker*

The Mighty Tracker

New hybrid tracker composed of:

- SciFi Tracker
 - Twelve layers of scintillating fibres • with SiPM readout

Schematic of one layer of the Mighty Tracker. [1]

Sigrid Scherl

The Mighty Tracker

New hybrid tracker composed of:

SciFi Tracker

- Twelve layers of scintillating fibres with SiPM readout
- Inner and Middle Tracker (IT+MT)
 - Instrument six layers with silicon sensors
 → HV-CMOS pixel chip *MightyPix*
 - Meet requirements of radiation hardness and granularity
 - In total over 46000 silicon sensors to cover area of 18 m² (minus beam-pipe hole)

Schematic of one layer of the Mighty Tracker. [1]

What's HV-CMOS Technology?

- HV-CMOS = High Voltage Complementary Metal-Oxide-Semiconductor
- Sensors also called HV-MAPS = HV Monolithic Active Pixel Sensors

Sigrid Scherl

- Working principle:
 - Sensing element and readout ASIC in one
 - n-well/p-substrate diode acts as sensor
 - Readout electronics isolated from high voltage by deep n-well
 - High reverse bias (> 200 V) creates thick depletion region between deep n-well and p-substrate
 - Photons and charged particles create electron/hole pairs, collected via drift

Overview

Working Principle

Simulations

MightyPix

- Based on knowledge from ATLASPix¹ and MuPix²
- Final requirements:
 - High granularity
 - Assign hits to correct bunch crossing
 - Low power consumption
 - Radiation hard
 - Cooled to around 0°C
- First prototype: MightyPix1

Parameter	Required Value
Chip size	\sim 2 cm \times 2 cm
Pixel size	$\sim 50 \ \mu m imes 150 \ \mu m$
Time resolution	< 3 ns
Power consumption	$< 0.15 W/cm^2$
NIEL ³	6×10^{14} 1 MeV n _{eq} /cm ²
Cooling	< 0°C

¹ HV-CMOS pixel chip proposed for ATLAS @ CERN ² HV-CMOS pixel chip produced for Mu3e @ PSI ³Non Ionising Energy Loss, includes safety factor of 2

MightyPix1: Readout of a Hit

 $\Gamma H C$

Sigrid Scherl

MightyPix1: Readout of a Hit

Analogue Part

ГНС

Sigrid Scherl

MightyPix1: Readout of a Hit

Analogue Part

Karlsruher Institut für Technologie

ГНС

MightyPix1: Readout of a Hit

Analogue Part

ΓHG

Sigrid Scherl

MightyPix1: Readout of a Hit

Analogue Part

ΓHC

Karlsruher Institut für Technologie

Source: Nicolas Striebig

LHCb

ΓH

Sigrid Scherl

MightyPix1: Readout of a Hit

Digital Part

4. Hit information stored in hit buffer

- **5.** Data loaded from highest active hit buffer to End of Column (EoC) buffer, go on to next one
- **6.** Read data from EoC
- **7.** For every hit 2 × 32 bit data words
- **8.** Parallel scrambler analogue to VELOPix
- **9.** Data sent into serializer tree and sent out

MightyPix1: Readout of a Hit

Digital Part

Karlsruher Institut für Technologie

- 4. Hit information stored in hit buffer
- Data loaded from highest active hit buffer to End of Column (EoC) buffer, go on to next one

6. Read data from EoC

- **7.** For every hit 2 × 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent into serializer tree and sent out

LHCb

H

Sigrid Scherl

MightyPix1: Readout of a Hit

Digital Part

- 4. Hit information stored in hit buffer
- Data loaded from highest active hit buffer to End of Column (EoC) buffer, go on to next one
- 6. Read data from EoC
- **7.** For every hit 2 × 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent into serializer tree and sent out

MightyPix1: Readout of a Hit

Digital Part

Karlsruher Institut für Technologie

- **4.** Hit information stored in hit buffer
- **5.** Data loaded from highest active hit buffer to End of Column (EoC) buffer, go on to next one
- 6. Read data from EoC
- **7.** For every hit 2 × 32 bit data words
- **8.** Parallel scrambler analogue to VELOPix
- **9.** Data sent into serializer tree and sent out

LHCb

Sigrid Scherl

MightyPix1: Readout of a Hit

Digital Part

- 4. Hit information stored in hit buffer
- Data loaded from highest active hit buffer to End of Column (EoC) buffer, go on to next one
- 6. Read data from EoC
- 7. For every hit 2 × 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent into serializer tree and sent out

MightyPix1: Readout of a Hit

Digital Part

- 4. Hit information stored in hit buffer
- Data loaded from highest active hit buffer to End of Column (EoC) buffer, go on to next one
- 6. Read data from EoC
- 7. For every hit 2 × 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent into serializer tree and sent out

MightyPix1: Efficiency Simulations

Can MightyPix handle the hit rate at LHCb?

- Expected rate at Mighty Tracker:
 - Max. $\sim 17 \text{ MHz/cm}^2$
 - Additionally 5% of two-pixel clusters
- Simulate efficiency with model of MightyPix1 \rightarrow Efficiency = ratio of detected to total events
- Parametrizable model of pixel matrix
 - Send simulation data to model
 - Comparison of input data with data seen by Readout FSM
 - Check if model correctly detects all hits that are sent in

Sigrid Scherl

LHCh

Source: Nicolas

Overview Working Principle **Simulations** Next Steps

MightyPix1: Efficiency Simulations

 Randomly generated Poisson distributed hits

(Used until I get fancy simulation data, that other groups are currently working hard to produce)

• Each data point corresponds to 4×10^5 events

MightyPix1 shows over 99% efficiency for maximum hit rates expected at the Mighty Tracker!

Why does the efficiency drop off?

- Low efficiency means hits are not detected correctly
- A hit is missed if it occurs in a pixel who's hit buffer is still occupied
- Lower rows are given priority in readout
 - \rightarrow Chance to miss a hit increases with row number

Why does the efficiency drop off?

• At 17 MHz/cm² 99.95% of hits get detected correctly

Why does the efficiency drop off?

- At 17 MHz/cm² 99.95% of hits get detected correctly
- But at 50 MHz/cm² the efficiency is only at 85% and a clear dependency on row number can be seen

Overview

Next Steps

- Increase speed of hit buffer readout
- Can do this by: Increasing number of End of Columns

Working Principle

Simulations

 \rightarrow Now: **2 EoC** for 320 hit buffers

Increasing the MightyPix Efficiency

Overview

Example: Double number of EoCs
 → Before: **1 EoC** for 320 hit buffers

 \rightarrow We got rid of the longest readout times

LHCb

Sigrid Scherl

Karlsruher Institut für Technologie

Annual Particle Physics Meeting

Plots for 50 MHz/cm² (>3 x expected max. rate) Working Principle

Simulations

Increasing the MightyPix Efficiency

Overview

Example: Double number of EoCs
 → Before: **1 EoC** for 320 hit buffers

Plots for 50 MHz/cm² (>3 x expected max. rate)

→ Now: **2 EoC** for 320 hit buffers

 \rightarrow And therefore have far less missing hits

LHCb

Sigrid Scherl

Karlsruher Institut für Technologie

Annual Particle Physics Meeting

LIVERPOOL

Summary and Next Steps

- Proposed new tracker for LHCb called *Mighty Tracker*
 - To be instrumented with up to 18 m² of silicon sensors
 - Currently developing HV-CMOS pixel chip *MightyPix*
- First prototype *MightyPix1*
- Efficiency simulations for MightyPix1
 - Can handle highest expected hit rates
 - Design ideas to go even higher
 - Can input new simulation data when available
- Design of second prototype *MightyPix2*

References

[1] LHCb Collaboration. Framework TDR for the LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era. CERN-LHCC-2021-012 ; LHCB-TDR-023. https://cds.cern.ch/record/2776420

[2] T. Hume, V. Bellee, O. Steinkamp. *Occupancy studies for the LHCb Run4 Mighty Tracker*. LHCb-PUB-2022-003, CERN-LHCb-PUB-2022-003, 2022.

https://cds.cern.ch/record/2800986

[3] https://commons.wikimedia.org/wiki/File:Normal_Distribution_Sigma.svg

Overview	Working Principle	Simulations	Next Steps	Backup

Backup

Overview

Advantages of HV-CMOS Technology

- HV-CMOS = High Voltage Complementary Metal-Oxide-Semiconductor
- Sensors also called HV-MAPS = HV Monolithic Active Pixel Sensors

Sigrid Scherl

• Advantages:

Karlsruher Institut für Technologie

- Very thin ~ 700 μm down to 50 μm
- Radiation hard
- Fast charge collection via drift
- Cheaper than hybrid
- Fabricated in standard CMOS process

33

LIVERPOOL

Purpose of the Mighty Tracker

- High precision momentum measurement with VELO
- Measurement of track direction of charged particles for PID systems
- Need high granularity because of high track density
 - → HV-CMOS sensors: 50 μ m in bending plane, 150 μ m in non-bending plane

Sigrid Scherl

TFC Signals

• LHCb sends Timing and Fast Control (TFC) signals to all FE modules

Working Principle

Simulations

Next Steps

Backup

- **BXReset:** Reset internal BX counter to synchronise chips to same BX
- Snapshot: Capture number of received TFC commands (partially implemented)
- **FEReset:** Reset all modules except TFC receiver, BX counter, chip configuration registers
- Cal: Could be used to control an on-chip injection circuit (not yet implemented)
- Sync: Chip outputs sync pattern, configurable via configuration register

Sigrid Scherl

Overview

LIVERPOOL

Mighty Tracker Simulation Data

- Data simulated for Occupancy studies for the LHCb Run4 Mighty Tracker [2]
- More than 70 000 sensors over four quadrants and six tracker layers
- 500 events in total \rightarrow limited statistics

Backup

What's the efficiency of MightyPix over the whole Tracker area?

First estimate of hit rate across tracker from simulations by Hume, Bellee, Steinkamp [2]

MightyPix1: Efficiency Simulations

Combine simulated efficiencies and hit rate map

 \rightarrow Efficiency of MightyPix1 over whole Mighty Tracker area

Backup

• Data from Occupancy studies for the LHCb Run4 Mighty Tracker [2]

Sigrid Scherl

- Only for hottest MightyPix1 sensor
- 500 events in total \rightarrow limited statistics
- Expect 5% of clusters where two pixels are hit

Clusters	No	Yes	ТоТ	2 µs
Total Hits	1183	1240	Total Hits	1183
Missing Hits	9	10	Missing Hits	9
Efficiency	99.24%	99.19%	Efficiency	99.24%

