## Beam Dynamics in g-2 experiment at Fermilab

E. Bottalico HEP Annual Meeting 19 May 2023



#### UNIVERSITY OF LIVERPOOL LEVERHULME TRUST



#### g-2 short recap: The Ring







## **Kickers and Inflector**

- The **inflector** cancels the storage ring field such that the muons are not deflected by the main **1.45 T** field.
- Superconducting, operational current ~2.6 kA.
- 3 Kickers are necessary to inject magic momentum muons along the magic radius (7.11 m) with a required kick at order of <u>10 mrad</u>.
- 4 kA current in 200 ns pulse.
- Design kick strength has been reached in Run-3 ( $\sim$ 160 kV).







### Quadrupoles

- The Electrostatic Quadrupoles (ESQ) system allows to strongly focus the beam vertically, four ESQ stations are symmetrically placed around the ring.
- The plates are raised from ground to operating voltage prior to each *fill* with RC charging time constants of  $\sim 5 \ \mu s$ .
- This procedure, known as scraping, initially displaces the beam vertically and horizontally with respect to the central closed orbit.





#### $\omega_a$ measurement – CBO oscillation



Given the restoring force by radial magnetic field, the beam oscillates radially (vertically too)

as the betatron frequency:  $\omega_{BO} = \omega_c \sqrt{1-n}$ , where **n** is the field-index.

- The beam is measured by detectors, calorimeters and trackers.
- The  $\omega_{BO} < \omega_{C}$ , so calorimeters see a different phase at each turn, measuring an oscillation

called <u>Coherent Betatron Oscillation</u> (CBO), given by  $\omega_{CBO} = \omega_C - \omega_{BO}$ 



$$2\pi f_{CBO} = \omega_C - \omega_{BO} = \omega_C (1 - \sqrt{1 - n})$$

$$\omega_{CBO} = 2.34 \ rad/\mu s$$

Where  $T_C \sim 0.149 \ ns$  and  $n \sim 0.108$ 



## How does the beam move?



• How really does the beam move inside the ring?







## How does the beam move?



• Like this!





## The beam motion inside the ring



- What we observe by detectors is the spatial projection and many fill average of the previous representation.
- Here what the tracker detectors see:





## The beam motion inside the ring



• What we observe by detectors is the spatial projection and many fill average of the previous representation.





#### $\omega_a$ measurement

See Cedric next talk



 The simplest function which describes the number of emitted positron from muon decay (so called "<u>wiggle plot</u>") is:

$$N(t) = N_0 \cdot e^{-\frac{t}{\tau_{\mu}}} \cdot (1 + A \cdot \cos(\omega_a \cdot t + \varphi))$$

From the FFT of the fit's residual shows many frequency peaks due to <u>beam dynamics</u> effects<sup>L</sup>
 that are not modeled by the previous function.









For the measurement of  $a_{\mu}$  the measured  $\omega_a$  and  $\omega_p$  need to be corrected by:



These corrections have been obtained during Run1 analysis.  $C_{pa}$ ,  $B_k$ ,  $B_q$  corrections were not present in E821.



Beam dynamics correction to  $\omega_{a}$ :  $C_{e}$ 



Considering the extended expression of the spin precession frequency in a magnetic field:

$$\overrightarrow{\omega_{a}} = \frac{e}{m} \left[ a_{\mu} \overrightarrow{B} - \left( a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \left( \overrightarrow{\beta} \times \overrightarrow{E} \right) - a_{\mu} \left( \frac{\gamma}{\gamma + 1} \right) \left( \overrightarrow{\beta} \cdot \overrightarrow{B} \right) \overrightarrow{\beta} \right]$$

This term introduces a bias on  $\omega_a$  that needs

to be corrected by Electric Field correction:

$$C_e = 2n(1-n)\beta^2 \frac{\langle x_e^2 \rangle}{R_0^2}$$
 is proportional to the

equilibrium radius distribution  $x_e$ .

$$C_e \sim 489 \, ppb$$





#### $a_{\mu}$ systematic sources



Many systematics come from effects that <u>change</u> the <u>phase</u> of the detected positrons <u>over time</u> and introduce a bias on  $\omega_a$ :

$$cos(\omega_a t + \phi(t)) = cos(\omega_a t + \phi_0 + \phi' t + ...)$$
$$= cos((\omega_a + \phi')t + \phi_0 + ...)$$

In general, anything that changes from <u>early-to-late</u> within each muon fill can be a cause of systematic error, as:

- Beam distortion
- Muon losses
- Varying lifetime
- Rate dependent reconstruction







- The measured *g*-2 phase of the muon is decay vertex position dependent.
- It is obtained as weighted average of the phases measured by each (x,y) pair

position.





### Beam dynamics correction to $\boldsymbol{\omega}_{a}$ : $C_{pa}$



 $C_{pa}$ : it is a Phase Acceptance effect. It is due to:

- 1. Beam variation during the *fill;*
- 2. Phase measured as function of the decay

position. 1) 2)  
$$\Delta \omega_a = \frac{d\varphi}{dt} = \frac{dY_{RMS}}{dt} \cdot \frac{d\varphi}{dY_{RMS}}$$

The effect was large in Run1 due to *broken resistors* 

$$C_{pa} \sim 180 \ ppb$$

We expect a reduction in Run2/3 (~50ppb/~20ppb)







|   | Those are the results for the RD                 |                                                                                   |                         |                   |
|---|--------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|-------------------|
|   | These are the results for the DD                 |                                                                                   | Correction Factor [ppb] | Uncertainty [ppb] |
|   |                                                  | $\omega_a$ (stat.)                                                                | —                       | 434               |
|   | corrections from Run-1, the phase                | $\omega_a$ (syst.)                                                                | —                       | 56                |
|   |                                                  | $f_b/f_0$                                                                         | —                       | 2                 |
|   |                                                  | Ce                                                                                | 489                     | 53                |
|   | acceptance (C <sub>pa</sub> ) correction was one | $C_{p}$                                                                           | 180                     | 13                |
|   |                                                  | $C_{ml}$                                                                          | -11                     | 5                 |
|   |                                                  | - C <sub>pa</sub>                                                                 | -158                    | 75                |
|   | of the topic I addressed during my PhD.          | $f_{calib}\left\langle \omega_{p}^{\prime}(x,y,\phi)\cdot M(x,y,\phi) ight angle$ | _                       | 56                |
|   |                                                  | $B_q$                                                                             | -17                     | 92                |
|   |                                                  | $B_k$                                                                             | -27                     | 37                |
| • | Now analysis is ongoing to finalize the          | $\mu_{p}'(34.7^{\circ}C)/\mu_{e}$ [PCK77]                                         | _                       | 10                |
|   |                                                  | $m_{\mu}/m_{e}$ [LAMPF-99; CD-2018]                                               | —                       | 22                |
|   |                                                  | g <sub>e</sub> /2 [HFG08]                                                         | _                       | 0                 |
|   |                                                  | Total Systematic                                                                  | _                       | 157               |
|   | Run-2/3 beam dynamics corrections,               | Total Fundamental Factors                                                         | —                       | 25                |
|   |                                                  | Total                                                                             | 544                     | 461               |
|   |                                                  |                                                                                   |                         |                   |
|   | stay tuned!                                      |                                                                                   |                         |                   |

# The closer you look the more there is to see"



• For any question or just to have a chat – <u>elia@liverpool.ac.uk</u>





## BACK-UP



#### $\boldsymbol{\omega}_a$ measurement

See Cedric next talk!



 The simplest function which describes the number of emitted positron from muon decay (so called "<u>wiggle plot</u>") is:

$$N(t) = N_0 \cdot e^{-\frac{t}{\tau_{\mu}}} \cdot (1 + A \cdot \cos(\omega_a \cdot t + \varphi))$$

From the FFT of the fit's residual shows many frequency peaks due to <u>beam dynamics</u> effects<sup>L</sup>
 that are not modeled by the previous function.









Considering the extended expression of the spin precession frequency in a magnetic field:

$$\overline{\omega_{a}} = \frac{e}{m} \left[ a_{\mu} \overline{B} - \left( a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) (\vec{\beta} \times \vec{E}) - a_{\mu} \left( \frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right]$$

$$C_{p} \sim 200 \ ppb$$

#### Beam dynamics correction to $\omega_a$ : $C_{lm}$

 $C_{lm}$ : describes the motion introduced on  $\omega_{a}$  phase due

to the loss of muon during the *fill*. It's explained by:

oss of muon during the *fill*. It's explained by: 1.

phase;

The number of loss muon change as function of 2.

momentum.  

$$\Delta \omega_a = \frac{d\varphi}{dt} = \frac{d\varphi}{dp} \cdot \frac{dp}{dt}$$

$$C_{lm} < 20 \ ppb$$





## Phase acceptance: Beam Motion Effects



