Status and prospects on muon g-2 and lepton flavor violation

Alberto Lusiani Scuola Normale Superiore and INFN, sezione di Pisa

II Workshop on Muon Precision Physics 2023 (MPP2023) Liverpool, 7-10 November 2023

Introduction

Muon g-2

- sub-ppm theory prediction
- sub-ppm experimental uncertainty
- precise Standard Model test
 - ► discrepancy ⇒ New Physics
- to search for high-energy New Physics, (g-2)_μ test more powerful than e and τ
- many activities on-going
 - direct measurements
 - measurements for theory prediction
 - dispersive theory prediction
 - lattice QCD theory prediction

Muon magnetic anomaly a_{μ}

•
$$a_{\mu} = (g_{\mu} - 2)/2$$

Lepton flavour violation

- theory predicts extreme suppression [e.g. $\mathcal{B}(\mu \to e\gamma \sim 10^{-54}]$]
- experiments very sensitive
- valuable tool to search for New Physics
- μ LFV more effective than e or τ
- au LFV modes essential to study NP models
- many muon and tau searches on-going

a_{μ} theory prediction to 0.37 ppm [Muon g-2 theory initiative, Dec 2020]

doi:10.1016/j.physrep.2020.07.006

Contribution	Section	Equation	Value $\times 10^{11}$	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2–7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9–17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18–30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, <i>uds</i>)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
HVP $(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18–32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

Calculation of QCD HVP,LO contribution to a_{μ}

$$\Delta a_{\mu}^{
m New \ Physics} \over \Delta a_e^{
m New \ Physics}} \sim {m_{\mu}^2 \over m_e^2} \simeq 43000$$

experiment and theory uncertainties contributions to a_{μ} test before April 2021

	δa"	δa
	[ppm]	[ppb]
experiment	0.54	0.24
theory	0.37	0.20
- α_{QED}	0.00	0.20
- QED	0.00	0.01
- EW	0.01	0.00
- QCD	> 0.37 -	0.01
- HVP	0.34	2)
- HLbL	0.15	e e

note: using less precise α_{OED} (Cs 2018) because of inconsistency with α_{OED} (Rb 2020)

Alberto Lusiani (SNS & INFN Pisa) - MPP2023, Liverpool, 7-10 November 2023

Motion and spin precession of muon in uniform magnetic field

polarized muons in magnetic storage ring

Motion and spin precession of muon in uniform magnetic field

polarized muons in magnetic storage ring

Beam focusing in storage ring, magic energy

beam focusing

- weak horizontal focusing provided by uniform magnetic field
- weak vertical focusing with electric field quadrupoles (associated *E*-field horizontal de-focusing overridden by magnetic focusing)

magic energy

$$\mathbf{\check{\omega}}_{a} = -\frac{e}{m_{\mu}} \begin{bmatrix} a_{\mu}\vec{B} & - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right)(\vec{\beta} \times \vec{E}) & - a_{\mu}\frac{\gamma}{\gamma + 1}\left(\vec{\beta} \cdot \vec{B}\right)\vec{\beta} \end{bmatrix}$$

$$E-field correction pitch correction$$

• magic energy, corresponding to $p_{\mu}^{\text{magic}} = 3.094 \text{ GeV}$ and $\gamma = 29.3$, zeroes E field correction

magic energy

CERN 1975-, BNL, FNAL

E = 0, ultra-cold muons

J-PARC E34

Rate of high-energy muon-decay electrons modulated with $\cos \omega_a t$

Muon production, storage and decay at FNAL Muon $g-2 \exp((E989))$

FNAL accelerator complex for Muon g-2

24 calorimeter modules

Two tracker modules

Calculation of the muon magnetic anomaly

$$\mathbf{a}_{\mu} = \left[\frac{\omega_{a}}{\tilde{\omega}_{p}'(T)}\right] \cdot \left[\frac{\mu_{p}'(T)}{\mu_{e}(H)}\right] \left[\frac{\mu_{e}(H)}{\mu_{e}}\right] \left[\frac{m_{\mu}}{m_{e}}\right] \left[\frac{g_{e}}{2}\right]$$

measurements by the Muon g-2 collaboration

ω _a	precession of muon spin relative to momentum rotation in magnetic field
${\widetilde \omega}_{ ho}'(T)$	precession frequency of shielded proton spin in spherical water sample at $T=34.7^\circ\text{C}$ in muon-beam-weighted magnetic field, $\tilde{\omega}'_p(T) = \langle \omega'_p(T)(x,y,\varphi) \times M(x,y,\varphi) \rangle$

notation

и

_p (T) magnetic momentu	m of proton in sph	erical water sample at 34.7 °C
-----------------	--------------------	--------------------	--------------------------------

 $\mu_e(H)$ magnetic momentum of electron in hydrogen atom

external measurements

	$\mu'_{P}(T)/$	$\mu_e(H)$	10.5 ppb	precision,	Metrologia	13,	179	(1977))
--	----------------	------------	----------	------------	------------	-----	-----	--------	---

100 ppt (for n. digits) theory QED calculation, Rev. Mod. Phys. 88 035009 (2016)

 \$\mu_e(H)/\mu_e\$ 100 ppt (for n. d
 \$m_\mu/m_e\$ 22 ppb precision CODATA 2018 fit, primarily driven by LAMPF 1999 measurements of muonium hyperfine splitting, Phys. Rev. Lett. 82, 711 (1999)

0.12 ppt, PDG 2023

 ω_a : muon spin precession frequency

• C_x : corrections to ω_a for E field, pitch, muon loss, phase accetpance, differential decay

- $\omega_{\rho}'(T)$ precession frequency of shielded proton spin in spherical water sample at T = 34.7 °C
- B_x : corrections to ω_p for quadrupole and kickers transient fields

Expected future precision of FNAL Muon g-2 measurement

Muon g-2 test, after FNAL Run 2+3 measurement released in August 2023

Run 2+3 ω_a corrections and uncertainties

	Run 1 uncertainty	Run 2+3 uncertainty	design goal uncertainty
ω_a^m (statistical)	434	201	100
ω_a^m (systematic)	56	25	
- C _e	53	32	
- C _p	13	10	
- C _{pa}	75	13	
- C _{dd}	-	8	
- C _{ml}	5	3	
ω_a (total systematic)	109	44	70
$\omega_p'(T)$	56	46	
- B _a	92	20	
$-B_k$	37	13	
${\widetilde \omega}_p'({\mathcal T})$ (total)	114	52	70
R_{μ} (total systematic)	157	70	100
external parameters	25	25	
total	462	215	140

 replace WP2020 a^{HVP,LO}_µ estimate with BMW2020 lattice QCD calculation
 [A. Keshavarzi, Lattice 2023]

▶ replace WP2020 $a_{\mu}^{\text{HVP,LO}}(\pi^{+}\pi^{-})$ in [0.33, 1.0] GeV interval with CMD-3 $\sigma(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-})$ measurement [A. Keshavarzi, Lattice 2023] (this is a visual exercise, not an updated SM prediction)

 replace WP2020 a^{HVP,LO}_µ estimate with BMW2020 lattice QCD calculation
 [A. Keshavarzi, Lattice 2023]

► replace WP2020 $a_{\mu}^{\text{HVP,LO}}(\pi^{+}\pi^{-})$ in [0.33, 1.0] GeV interval with CMD-3 $\sigma(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-})$ measurement [A. Keshavarzi, Lattice 2023] (this is a visual exercise, not an updated SM prediction)

 replace WP2020 a^{HVP,LO}_µ estimate with BMW2020 lattice QCD calculation
 [A. Keshavarzi, Lattice 2023]

► replace WP2020 $a_{\mu}^{\text{HVP,LO}}(\pi^{+}\pi^{-})$ in [0.33, 1.0] GeV interval with CMD-3 $\sigma(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-})$ measurement [A. Keshavarzi, Lattice 2023] (this is a visual exercise, not an updated SM prediction)

Also new SND2k σ(e⁺e⁻ → π⁺π⁻) measurement, less precise than CMD-3, consistent with previous measurements used in WP2020

Muon g-2 test prospects

experimental measurement

- a_{μ} to 0.12,ppm from FNAL-E989 complete dataset analysis by 2025
 - a_{μ} to 0.45 ppm from J-PARC E34 with cold slow (E = 300 MeV) muons in small 4 T NMR magnet
- a_{μ} to 3 ppm from Muonium spectroscopy <u>PRL 127 (2021) 251801</u>

theory prediction

- energy-scan scan $\sigma(e^+e^-
 ightarrow$ hadrons)
 - CMD-3, SND
 - BES-III
- ► ISR technique $\sigma(e^+e^- \rightarrow hadrons)$
 - \blacktriangleright BABAR $\sigma(e^+e^-
 ightarrow \pi^+\pi^-(\gamma))$
 - Belle II (asymmetric-energy super B-factory)
 - BES-III, possibly Super Charm-Tau factories
 - analysis of KLOE data (Liverpool)
- MUonE: 160 GeV muons on e^- t-channel scattering, $a_{\mu}^{\text{HVP,LO}}$ to 0.5%
- Lattice QCD community will test and reproduce the BMW 2021 HVP contribution calculation
 - partial replications all confirmed BMW calculation
- Muon g-2 Theory Initiative group will verify and combine available measurement and calculations

J-PARC E34 Muon g-2/EDM experiment

J-PARC E34 schematics

J-PARC E34 features

Measure muon g-2 and EDM with *significantly different methods* from BNL/Fermilab experiments

Features:

- Low emittance muon beam (1/1000)
- No strong focusing (1/1000):
 - Weak magnetic focusing, no/minimal E-field and pitch corrections
- Good injection efficiency (x 10)
- Compact storage ring (1/20):
 - B-field significantly more homogeneous and stable, easier to measure
- Tracking detector with large acceptance

[from D.Kawall, Elba, June 2019]

J-PARC E34 experimental sequence

J-PARC E34 sensitivity

	BNL-E821	Fermilab-E989	Our Experiment
Muon momentum	3.09 Ge	V/c	$300 { m ~MeV}/c$
Lorentz γ	29.3		3
Polarization	100%	0	50%
Storage field	B = 1.4	5 T	B = 3.0 T
Focusing field	Electric qua	drupole	Very weak magnetic
Cyclotron period	$149 \mathrm{~ns}$		$7.4 \mathrm{~ns}$
Spin precession period	$4.37 \ \mu$	ιs	$2.11 \ \mu s$
Number of detected e^+	5.0×10^9	$1.6{ imes}10^{11}$	$5.7 imes10^{11}$
Number of detected e^-	3.6×10^9	—	_
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb
(syst.)	280 ppb	100 ppb	$<\!70~{ m ppb}$
EDM precision (stat.)	$0.2 \times 10^{-19} \ e \cdot \mathrm{cm}$		$1.5 \times 10^{-21} \ e \cdot \mathrm{cm}$
(syst.)	$0.9 \times 10^{-19} \ e \cdot \mathrm{cm}$		$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$

[PTEP 2019 (2019) 5, 053C02]

J-PARC E34 schedule

Schedule

• Construction of experimental apparatus is ongoing aiming at the start of the experiment in 2028 JFY.

[Takashi Yamanaka, Bern, Sep 2023]

Status and prospects on muon g-2 and lepton flavor violation

Muon g-2 from Muonium spectroscopy

- Delaunay, Ohayon, Soreqm, PRL 127 (2021) 251801: measure both a_{μ} and m_e/m_{μ} from
 - Muonium hyperfine splitting v_{HFS}
 - J-PARC MUSEUM experiment
 - Muonium 1S-2S transition ν_{1S-2S}
 - PSI Mu-MASS experiment
 - J-PARC Muonium 1S-2S experiment

J-PARC MuSEUM schedule

MUonE experiment

MUonE experiment

MUonE experiment

Conclusions and future plans

- The new method proposed by MUonE to measure $a^{\rm HLO}$ is independent and competitive with the latest evaluations.
- Intense Beam Test activities in 2021-2022: first experience with detector in real beam conditions.
- 3 weeks Test Run in 2023: proof of concept of the experimental proposal using 2 tracking stations (pretracker + 1 station with target) and ECAL.
- Technical proposal in 2024 based on the results of the Test Run.
- Towards the full experiment: 5-10 stations before LS3 (2026). 2-4 months data taking: first measurement (few % precision) of $a^{\rm HLO}$.
- Full apparatus (40 stations) after LS3 to achieve the target precision (~0.3% stat and similar syst).

The MUonE Collaboration gratefully acknowledges the contributions of the CMS Collaboration.

Charged Lepton Flavour Violation searches

- In the quest of New Physics, can be sensitive to very high scale:
 - Kaon physics:

$$\frac{s\overline{d}s\overline{d}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^5 \text{ TeV}$$

[ε_κ]

- Charged Lepton Flavour Violation $[\mu \rightarrow e \gamma]$

$$\frac{\mu \overline{e} f \overline{f}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^4 \, \text{TeV}$$

- At low energy: lots of experiments e.g., MEG, Sindrum, Sindrum II, BaBar, Belle, BESIII, LHCb, ATLAS huge improvements on measurements and bounds obtained and more expected
 e.g. MEG, Mu3e, DeeMee, COMET, Mu2e, Belle II, LHCb, HL-LHC NA64, EIC, FC-ee, CEPC,STCF
- Standard Model LFV extremely suppressed Detectable rates from New Physics Models

[adapted from E.Passemar, FPCP 2022]

Muon Lepton Flavour Violation

$$\blacktriangleright \text{ effective theory for } \mu \to e\gamma, \quad \mu \to eee, \quad \mu N \to eN \quad [\text{Prog.Part.Nucl.Phys. 71 (2013) 75}] \\ \mathcal{L}_{\text{CLFV}} = \begin{cases} \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + h.c. + & \mu \to e\gamma, \quad \mu \to eee \\ \frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_\mu e_L \left(\bar{u}_L \gamma^\mu u_L + \bar{d}_L \gamma^\mu d_L\right) + h.c. & \text{contact term, } Z', \text{ leptoquark} \\ \mu N \to eN, \quad \mu \to eee \\ \text{only via loops: } \mu \to e\gamma \end{cases}$$

Also tau LFV searches probe & constrain New Physics models

Muon LFV searches results and prospects

recent MEG-II preliminary result, arXiv:2310.12614 [hep-ex], $\mathcal{B}(\mu^+ \to e^+\gamma) < 7.5 \cdot 10^{-13}$ (90% CL), combined with MEG 2016 $\mathcal{B}(\mu^+ \to e^+\gamma) < 3.1 \cdot 10^{-13}$ (90% CL)

MEG experiment at PSI, search for $\mu \rightarrow e\gamma$

PSI 28 MeV/c-momentum surface μ^+ beam, rate up to $R_\mu = 10^8/s$

Status and prospects on muon g-2 and lepton flavor violation

MEG experiment at PSI, search for $\mu ightarrow e\gamma$

MEG experiment at PSI, search for $\mu ightarrow e\gamma$

optimization

• optimal $R_{\mu} = 3.10^7$ /s to suppress accidental background $\propto R_{\mu}^2$ [max $R_{\mu} = 1.10^8$ /s]

analysis

loose selection of e⁺, γ candidates with compatible detection times
 extended maximum likelihood fit with (simplified expression):

$$L(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{acc}}) = \frac{e^{-(N_{\text{sig}}+N_{\text{RMD}}+N_{\text{acc}})}}{N_{\text{obs}}!} \prod_{1}^{N_{\text{obs}}} \left(N_{\text{sig}}F_{\text{sig}}(x_i) + N_{\text{RMD}}F_{\text{RMD}}(x_i) + N_{\text{acc}}F_{\text{acc}}(x_i)\right)$$

 $N_{
m obs} =$ number of events in signal window; $x_i = E_{\gamma}, \quad E_{e+}, \quad \theta_{e\gamma}, \quad \phi_{e\gamma}, \quad T_{e\gamma}$

► N_{RMD} and N_{acc} constrained to observed events in sidebands with Gaussian terms (not shown above)

▶ 90% confidence interval of N_{sig} using Feldman-Cousins approach with profile-likelihood ratio ordering

- N_{μ} in signal acceptance computed by counting Michel and radiative muon decays
- $1/N_{\mu}$ (signal acceptance) = $(5.84 \pm 0.21) \cdot 10^{-14}$ (single event sensitivity)
- ▶ no significant signal found $B(\mu \rightarrow e\gamma) < 4.2 \cdot 10^{-13}$ at 90% CL Eur.Phys.J.C 76 (2016) 434

MEG experiment at PSI, likelihood projections

MEG-II vs. MEG detector performances

(different beam intensities, unstable photon detector energy thresholds ...). Foreseen efficiency reachable in stable data taking conditions. [F.Cei, Pisa, Oct 2023]

Future MEG + MEG-II sensitivity

Mu3e (PSI), search for $\mu \rightarrow 3e$

Mu3e design

Features:

- surface muons (p=29 MeV/c, DC) stopped on target at high rate: 10⁸ 10⁹ /s
- ultra thin silicon pixel detector (HV-MAPS) with 1 per mill radiation length / layer
- · high precision tracking using recurling tracks in strong magnetic field
- · fast timing detectors (scintillating fibers & tiles)

Status and prospects on muon g-2 and lepton flavor violation

Status and prospects on muon g-2 and lepton flavor violation

Searches for muon conversion in nuclei, techniques

Mu2e searches for **Charged Lepton Flavor Violation (CLFV)** via the coherent conversion:

$$\mu^{-} + AI \rightarrow e^{-} + AI$$

Same channel as COMET, complementary to MEGII ($\mu^+ \rightarrow e^+\gamma$) and Mu3e ($\mu^+ \rightarrow e^+e^-e^+$) [S. Di Falco, EPS-HEP2023]

Mu2e **goal** is to improve by **a factor 10**⁴ the world's best sensitivity on:

$$R_{\mu e} = \frac{\Gamma \left(\mu^{-} + N \rightarrow e^{-} + N\right)}{\Gamma \left(\mu^{-} + N \rightarrow \text{all captures}\right)}$$

SINDRUM II @PSI (2006, Au)*: **R**_{μe}<7·10⁻¹³ (90% CL)

Mu2e at Fermilab Muon Campus

[S. Di Falco, EPS-HEP2023]

Given the very low background level a 5σ discovery will require Mu2e to observe just 5 events of muon conversion

The $R_{\mu e}$ corresponding to a **5** σ **discovery** in Run 1 is:

$$R_{\mu e} = 1.1 \cdot 10^{-15}$$

Mu2e Run 1 5 Discovery reach

If no events will be observed the 90% CL limit will be:

$$R_{\mu e} = 6.2 \cdot 10^{-16}$$
 Mu2e Run 1
90% CL limit

that is more than **x1000** better than current best limit!

[S. Di Falco, EPS-HEP2023]

Tau LFV decay searches

LFV search for $au o \mu \gamma$

- LFV searches sensitive to very high energy possible New Physics
 - muon LFV searches most sensitive, tau LFV searches are complementary

Backup slides

the second s	THE REAL PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE

FNAL-E989 vs. BNL-E821

NAL-E989	design precisio	on, compared	to BNL-E821	final report (2006)
----------	-----------------	--------------	-------------	---------------------

	BNL E821 (2006)	FNAL E989 final goal	
ω_a statistical	460 ppb	100 ppb	$ imes$ 21 detected muon decays (1.6 \cdot 10 ¹¹)
ω_a systematic	210 ppb	70 ppb	faster calorimeter with laser calibration, tracker
ω_p systematic	170 ppb	70 ppb	more uniform <i>B</i> , improve NMR measurement
external measurements	25 ppb	25 ppb	
total	540 ppb	140 ppb	

 ω_a : measured muon spin precession frequency in magnetic field

 ω_p : measured proton spin precession frequency to measure magnetic field

$a_{\mu}^{\text{HVP,LO}}(0.6 < \sqrt{s} < 0.88 \,\text{GeV})$ from CMD-3

Muon g-2 discrepancy and New Physics Models

Which models can still accommodate large deviation?

SUSY: MSSM, MRSSM

- MSugra...many other generic scenarios
- Bino-dark matter+some coannihil.+mass splittings
- Wino-LSP+specific mass patterns

Two-Higgs doublet model

• Type I, II, Y, Type X(lepton-specific), flavour-aligned

Lepto-quarks, vector-like leptons

 \bullet scenarios with muon-specific couplings to μ_L and μ_R

Muon (g - 2)

Simple models (one or two new fields)

- Mostly excluded
- light N.P. (ALPs, Dark Photon, Light $L_{\mu} L_{\tau}$)

Dominik Stöckinger

Comparisons

Sigma deviation between different predictions/measurements

	FNAL 2023 (World Ave)	WP2020	BMW	CMD-3
Exp	-			
WP 2020	5.0 (5.1)	-		
BMW	1.6 (1.7)	2.0	-	
CMD-3	1.4 (1.5)	2.8	0.4	-

- Comparisons are taken from the whole a_u value.
- · They're accurate when comparing to experiment
- But e.g. WP (2020) & BMW both include same H-LbL components and error, so significance of difference between them is a little underestimated (2.0 vs 2.2σ).

[by J.Mott, 10 August 2023]

HVP dispersive prospects

A. El-Khadra P5 town hall, 21-24 Mar 2023

Ongoing work on experimental inputs:

- BaBar: new analysis of large data set in ππ channel, also πππ, other channels, other channels
- KLOE: new analysis of large data in $\pi\pi$ channel, other channels
- SND: new results for $\pi\pi$ channel, other channels in progress
- BESIII: new results in 2021 for $\pi\pi$ channel, continued analysis also for $\pi\pi\pi$, other channels
- Belle II: arXiv:2207.06307 (Snowmass WP) Better statistics than BaBar or KLOE; similar or better systematics for low-energy cross sections
- STCF: arXiv:2203.06961
- Need blind analyses to resolve the tensions (esp. for $\pi\pi$ channel)

Ongoing work on theoretical aspects:

- Developing NNLO Monte Carlo generators (STRONG 2020 workshop https://agenda.infn.it/event/28089/) [# appendix]
- radiative corrections using FsQED (scalar QED + pion form factor)
- charge asymmetry (CMD-3 measurement) vs radiative corrections [Ignatov + Lee, arXiv:2204.12235]
- development of new dispersive treatment of radiative corrections in $\pi\pi$ channel [Colangelo at al, arXiv2207.03495]
- including τ decay data: requires nonperturbative evaluation of IB correction [M. Bruno et al, arXiv:1811.00508]

If the differences between experiments are resolved: data-driven evaluations of HVP with ~ 0.3 % feasible by ~2025 **Backup slides**

Backup slides

Lattice HVP

A. El-Khadra P5 town hall, 21-24 Mar 2023

HVP: lattice

Ongoing work:

Evaluations of short-distance windows [ETMC, RBC/UKQCD]

Proposals for computing more windows:

- Use linear combinations of finer windows to locate the tension (if it persists) in \sqrt{s} [Colangelo et al, arXiv:12963]
- Use larger windows, excluding the long-distance region t ≥ 2 fm to maximize the significance of any tension [Davies at at, arXiv:2207.04765]

For total HVP:

- Independent lattice results at sub-percent precision: coming soon!
- Including ππ states for refined long-distance computation (Mainz, RBC/UKQCD, FNAL/MILC)
- include smaller lattice spacings to test continuum extrapolations (needs adequate computational resources)

If results are consistent, Lattice HVP (average) with $\ \sim 0.5 \ \%$ errors feasible by 2025

[by J.Mott, 10 August 2023]

Muon g-2/EDM experiment at J-PARC

- no electric field, low focusing magnetic field
- silicon tracker instead of calorimetry
- uner construction aiming for data taking from 2028, 0.45 ppm statistical uncertainty goal
- taking data to demonstrate the muon cooling by using the laser ionization of muonium
- second phase with higher precision may be approved in future

 g_e and α

• New measurement of g_e in 2023:

0.13 ppt on g_e

Measurement of the Electron Magnetic Moment

X. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse Phys. Rev. Lett. **130**, 071801 – Published 13 February 2023

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.071801

 Ability to compare with prediction hampered by disagreement in the value of α:

[by J.Mott, 10 August 2023]