

II Workshop on Muon Precision Physics

Towards NNLO for low-energy $e^+ e^-$ into leptons and hadrons

Adrian Signer

Paul Scherrer Institut / Universität Zürich

MPP23 / Liverpool / 07 Nov 2023

A. Signer, Nov 2023 - p.1/21

- Spring 2022: start of a community effort
- theoretical description for $e^+ e^-
 ightarrow$ hadrons at low energies $\sqrt{s} \lesssim 1-2\,{
 m GeV}$
- main processes • main processes $e^{+}e^{-} \rightarrow \mu^{+}\mu^{-} + \gamma \{+\gamma\}$ $e^{+}e^{-} \rightarrow e^{+}e^{-} + \gamma \{+\gamma\}$ $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} + \gamma \{+\gamma\}$ • more processes $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} + \gamma^{0}$ $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \pi^{0} \pi^{0}$ $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \pi^{-} \pi^{-} \pi^{-} \pi^{-}$
- there are more processes and (e^+e^-) in final state

- two parts of my talk
- part 1: 'politics'
- part 2: science \rightarrow later contributions

- Strong2020: Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e⁺ e⁻ collisions WorkStop/ThinkStart in Zurich https://indico.psi.ch/event/13707/
- inspired by [0912.0749]

Eur. Phys. J. C (2010) 66: 585–686 DOI 10.1140/epjc/s10052-010-1251-4 The European Physical Journal C

Review

Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies

• consolidate and implement the progress since 2010

Team: P. Beltrame, E. Budassi, C. Carloni Calame, G. Colangelo, M. Cottini, A. Driutti, T. Engel, L. Flower, A. Gurgone, M. Hoferichter, F. Ignatov, S. Kollatzsch, B. Kubis, A. Kupsc, F. Lange, D. Moreno, F. Piccinini, M. Rocco, K. Schönwald, A. Signer, G. Stagnitto, D. Stöckinger, P. Stoffer, T. Teubner, W. Torres Bobadilla, Y. Ulrich, G. Venanzoni + ???

WP1:	QED for leptons at NNLO
WP2:	Form factor contributions at N ³ LO
WP3:	Processes with hadrons
WP4:	Parton showers
WP5:	Experimental input

WP1: QED for leptons at NNLO

WP2: Form factor contributions at N³LO

WP3: Processes with hadrons

WP4: Parton showers / YFS

WP5: Experimental input

Working Group Strong2020

- preserve and further develop some well established codes for low-energy $e^+\,e^-$
- cross fertilisation from huge effort made for LHC
- get new (preferably young) people to join with new ideas/approaches
- open science approach: what is in which generator, where can I get it
- open minded assessment of importance (or not) of particular contributions
- a community effort (we really try/ied)
- it is not yet too late to join (but soon it will be)

contact Andrzej Kupsc, AS, Yannick Ulrich, Graziano Venanzoni

• it worked marvellously for the MUonE theory initiative

connections

QCD@LHC

• e.g. [2304.06682] NNLO cross section for $p p \rightarrow j j \gamma$ (i.e. $2 \rightarrow 3$ massless)

- automated one-loop codes, e.g. OpenLoops
- high-energy event generators e.g. Sherpa
- match NNLO to shower e.g. MiNNLO_{PS}

and, of course, MUonE

lepton-proton (MUSE, PRad, Amber, ULQ2 ...)

A. Signer, Nov 2023 - p.8/21

QCD @ LHC	\Leftrightarrow	QED @ low & medium energy	
non-abelian	\geq	abelian	matrix elements somewhat easier
non-abelian	\gg	abelian	IR structure much easier
massless fermions	\ll	massive fermions	loop amplitudes much harder
jets	<	exclusive w.r.t.	numerics harder $\supset \log(m^2/Q^2) \equiv L$
		collinear radiation	much harder for small masses

stealing from QCD and other fields

- master integrals (reduction and computation)
- automated tools for one-loop amplitudes
- effective field theory methods
- match fixed-order result to parton shower / YFS

physical $(2 \rightarrow 2)$ cross section

challenges

- fully differential phase-space integration
- $\Rightarrow \ \ \mathsf{QED} \ \mathsf{huge} \ \mathsf{simplification}$
 - virtual amplitudes with massive particles
- \Rightarrow one-loop: "standard"
- \Rightarrow two-loop: bottleneck
 - numerical instabilities due to pseudo-singularities
- ⇒ need stabilisation

massive fermions \rightarrow only soft singularities (use $m_{\gamma} \neq 0$ or $d = 4 - 2\epsilon$) and collinear logarithms (mathematically ok, but numerics !?)

slicing or subtraction (for $2 \rightarrow 2$), can be extended to NNLO (and beyond)

$$\begin{split} d\sigma_{\mathbf{r}}^{(1)}\big|_{\mathsf{sl}} &= \int_{E_{\gamma} < \delta} d\Phi_{3=2+\gamma} \,\mathcal{S}^{@} |\mathcal{A}_{\gamma}^{(0)}|^{2} \,S(k_{2}, p_{2}) + \int_{E_{\gamma} \ge \delta} d\Phi_{3} \,|\mathcal{A}_{\gamma}^{(0)}|^{2} \,S(k_{2}, p_{2}, k_{\gamma}) \\ d\sigma_{\mathbf{r}}^{(1)}\big|_{\mathsf{su}} &= \int d\Phi_{3=2+\gamma} \,\mathcal{S}^{@} |\mathcal{A}_{\gamma}^{(0)}|^{2} \,S(k_{2}, p_{2}) + \\ &\int d\Phi_{3} \Big(|\mathcal{A}_{\gamma}^{(0)}|^{2} S(k_{2}, p_{2}, k_{\gamma}) - \mathcal{S}^{@} |\mathcal{A}_{\gamma}^{(0)}|^{2} S(k_{2}, p_{2}) \Big) \end{split}$$

loops with masses

- scales (e.g. masses) are the enemy of loop-integral calculators
- for one-loop amplitudes generic tools e.g. OpenLoops
- but massive two-loop integrals for $2 \rightarrow 2$ are not all known

[here should go a list of an army of loop-calculating theoreticians ... sorry]

loops with masses

- scales (e.g. masses) are the enemy of loop-integral calculators
- for one-loop amplitudes autimated tools available
- for two-loop can use massification and miss terms $\sim (lpha/\pi)^2 \, m_\ell^2/q^2$

collinear factorization / SCET inspired

 \Rightarrow massification, i.e. obtain leading mass effects based on massless loops assumes m_ℓ is the only small scale, much smaller than all other scales

real-virtual corrections trivial in principle, extremely delicate numerically

- Bhabha scattering (as example) [2106.07469]
- M_{exact} Mathematica expression
- full M vs next-to-soft limit LBK theorem beyond LO [2112.07570, 2304.11689]

Buliding block $e^+\,e^-\to\gamma^*$

- NNLO available (used for $e \mu \rightarrow e \mu$ and $\ell p \rightarrow \ell p$) including real and vitual, no approximation
- moving towards NNNLO, ∃ open questions
 - 3-loop known [2202.05276]
 - 2-loop $e^+ e^- \rightarrow \gamma^* \gamma$ bottleneck, need $m_e \neq 0$ cannot use massification in full phase space \exists regions with e.g. $(p_{\gamma} + p_e)^2 \simeq m_e^2$
 - 1-loop $e^+ e^-
 ightarrow \gamma^* \gamma \gamma$ use tools, numerics?
 - 0-loop $e^+ e^-
 ightarrow \gamma^* \gamma \gamma \gamma$ trivial but dangerous
- playground for combination with parton showers
- (dominant??) subset of N³LO for MUonE
- can we use next-to-soft LBK to improve YFS ??

Buliding block $e^+\,e^-\to\gamma^*\,\gamma^*$

- doubly virtual Compton scattering (gauge invariant)
- NLO doable, including real and vitual
- NNLO painful, would it be useful ?
 - if one $\gamma^* \to \gamma$ it is desperately wanted
 - dispersive approach to combine with $\pi^+\pi^-$ final state
 - a (gauge-invariant) subset of N³LO for MUonE
- playground for combination with parton showers

Process $e^+ e^- \rightarrow \mu^+ \mu^- \gamma$

- NLO done, with massified *e* part of NNLO MUonE can 'easily' be done with full mass dependence
- NNLO no show stoppers, but approximations
 - two-loop amplitude use massification, for e and μ
 - one-loop available with full mass dependence
 - phase-space integration tricky but doable
- massification ok'ish for tagged well-isolated photon
- some subsets (OPE) can be done with full mass dependence, very useful for $\delta_{\rm th}$ determination
- ??? full m_{μ} mass dependence for two-loop ???

hadronic processes

What about $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$?

• all this can in principle be done for sQED or even FsQED (scalar QED with form factors)

- but is this useful ??
- $\mathcal{L}_{sQED} \subset \mathcal{L}_{\chi PT} |_{p^2}$ but nothing beyond (sQED \rightarrow FsQED !?! resonances !?!)
- additional (hard) final-state radiation questionable with FsQED
- need dispersive approach for more solid footing

- additional final-state radiation questionable with FsQED
- dispersive approach badly needed !!
- non-pole contributions are also beyond FsQED-LO

hadronic processes

sewing together building blocks

 $e^+\,e^- \rightarrow \ell^+\,\ell^-$ and $e^+\,e^- \rightarrow \pi^+\,\pi^-$

cp TPE in $\ell p \rightarrow \ell p$

NLO TPE with form factors and resonances cross check with dispersive approach

importance of beyond FF depends on q^2

A. Signer, Nov 2023 - p.20/21

what to expect in the next few years

- $e^+\,e^- o \mu^+\,\mu^-\,\gamma$ at NNLO with some approximations $(\alpha/\pi)^2\,m_\ell^2/s$
- $e^+ \, e^-
 ightarrow \gamma^*$ at NNNLO with some gymnastics for the real-virtual-virtual part

what we hopefully get in the next few years

- further dispersive input for building blocks
- better understanding when FsQED is (how) ok and when it fails completely

what we will get in the next few months

• an updated report Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e^+e^- last call for people to join

A. Signer, Nov 2023 - p.21/21