

Experimental Inputs to HVP from the BESIII Experiment

Riccardo Aliberti

II Workshop on Muon Precision Physics

Liverpool, 7-10 November 2023

Muon (g-2): SM and Experiment

- Tension Experiment SM (WP 2020) has now reached 5σ!
- Puzzling discrepancies in HVP evaluation:
 - Dispersive Lattice QCD
 - KLOE BaBar in $e^+e^- \rightarrow \pi^+\pi^-$
 - New CMD-3 measurement vs ALL the others in $e^+e^- \rightarrow \pi^+\pi^-$
- Better understanding strictly needed!

Muon (g-2): SM and Experiment

- Tension Experiment SM (WP 2020) has now reached 5σ!
- Puzzling discrepancies in HVP evaluation:
 - Dispersive Lattice QCD
 - KLOE BaBar in $e^+e^- \rightarrow \pi^+\pi^-$
 - New CMD-3 measurement vs ALL the others in $e^+e^- \rightarrow \pi^+\pi^-$
- Better understanding strictly needed!

Muon (g-2): SM and Experiment

- Tension Experiment SM (WP 2020) has now reached 5σ!
- Puzzling discrepancies in HVP evaluation:
 - Dispersive Lattice QCD
 - KLOE BaBar in $e^+e^- \rightarrow \pi^+\pi^-$
 - New CMD-3 measurement vs ALL the others in $e^+e^- \rightarrow \pi^+\pi^-$
- Better understanding strictly needed!

The BESIII Experiment (1)

• 93% coverage of the solid angle

The BESIII Experiment (2)

- World largest τ-charm dataset in e⁺e⁻ annihilation
- Detailed studies in:
 - Charmonium spectroscopy and charm physics
 - Light hadron dynamics
 - τ-physics
 - R-scan

BESIII Inputs to HVP

ISMD2022

R-Value Measurements at BESIII

...

- Accuracy better than 2.6% below 3.1 GeV and better than 3% above
- Exceeding pQCD predictions (2.7σ above 3.4 GeV)
- More to come in near future:
 - Result with just 14 energy points out of 130
 - Feasibility studies for low energy (<2 GeV) measurement via ISR

MPP2023 - BESIII Inputs to HVP

Pion Form Factor at BESIII

• Tagged analysis

45

40

35

30 ⊒≝ 25

> 20 15 10

> > 0.6

0.65

- Background only from $\mu\mu(\gamma)$ events
- π/μ separation based on neural network (ANN)

BESIII fit

0.85

0.9

BESIII

Form factor evaluation for 0.6 ≤ m_{ππ} ≤ 0.9 GeV

[Phys.Lett.B753 (2016) 629]

0.75

\s' [GeV]

0.8

+ 70% of total 2π contribution

0.7

- 50% of a_{μ}^{HVP} contribution
- Fit with Gounaris-Sakurai parameterization

- Cross check with muons:
 - Selecting muons using ANN
 - Perfect agreement with QED prediction
 - Measurement of J/ ψ electronic width

- **Precision competitive** with current best results:
 - BESIII: 1.0%
 - BaBar: 0.7%
 - KLOE: 0.6%
- Evaluation of covariance matrix corrected [Phys.Lett.B812 (2021) 135982]
 - Lower statistical uncertainty
- Work on going to reach O(0.5%) accuracy

Pion Form Factor: Perspectives

New measurements foreseen:

• O(0.7%) accuracy

- Data sets at $\sqrt{s} = 3.77$ and 4.18 GeV
- Integrated luminosity ~6 fb⁻¹
- Normalization to luminosity
- Different selection strategies
- Investigation of NNLO effects
- Partial blinding

Sum	0.9 0.7
Luminosity $\mathcal L$	-0.5- 0.3
Radiator function	0.5
Vacuum polarization correction δ_{vac}	0.2
FSR correction δ_{FSR}	0.2
Unfolding	0.2
Background subtraction	0.1
Angular acceptance	0.1
Pion e-PID efficiency	0.2
Pion ANN efficiency	0.2
Tracking efficiency	-0.3 0.2
Photon-efficiency	0. 2 ·
Source	Uncertainty (%)
Source	Uncertainty (%)

Pion Form Factor: Perspectives

Two new measurements foreseen:

- O(0.5%) accuracy
 - New data at $\sqrt{s} = 3.77$
 - Integrated luminosity ~17 fb⁻¹
 - Normalization to di-muon events
 - Blind analysis

Source	Uncertainty (%)
Photon efficiency	0.2
Tracking efficiency	0.3 0.2
Pion ANN efficiency	0.2
Pion e-PID efficiency	0.2
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction δ_{FSR}	0.2
···Vacuum·polarization correction δ_{vac} ···	0.2
-Radiator function	0.5
- Luminosity £	0.5
Sum	-0.9- 0.5

<u>New concept</u>: Determine hadronic mass from ISR photon on ^{JG U}

- Simple selection criteria:
 - 1 high energetic photon (E > 1.2 GeV)
 - At (very) large angle (37°-143°)
 - At least 1 charged particle
- Extremely high efficiency
 - Limited reliance on generators
- Main backgrounds
 - QED (Bhabha)
 - Non-ISR hadronic events

<u>New concept</u>: Determine hadronic mass from ISR photon only

- Simple selection criteria:
 - 1 high energetic photon (E > 1.2 GeV)
 - At (very) large angle (37°-143°)
 - At least 1 charged particle
- Extremely high efficiency
 - Limited reliance on generators
- Main backgrounds
 - QED (Bhabha,...)
 - Non-ISR hadronic events

Events / 5 MeV

- Large smearing introduced by detector resolution
- Apply **unfolding** technique to recover the "true" spectrum
- Quantifying (eventual) bias introduced by unfolding
 - \checkmark First results suggest **negligible impact** on a_{μ}

Aiming for few percent accuracy

JG

Summary

- **Puzzling picture** in the HVP contribution to a_{μ}
 - Tension dispersive lattice QCD
 - KLOE BaBar CMD-3 pion FF inconsistencies
- New experimental input are of utmost importance
- **BESIII** is providing **important inputs**
 - Most precise inclusive R measurement above 2 GeV [Phys. Rev. Lett. 128 (2022) 062004]
 - Pion FF measurement with 1% accuracy [Phys.Lett.B753 (2016) 629]

But the best is still to come:

- R measurement above 2 GeV (still >100 energy points to be analyzed)
- **Pion FF** measurements $(1\% \rightarrow 0.7\% \rightarrow 0.5\%)$
- World first inclusive R measurement below 2 GeV