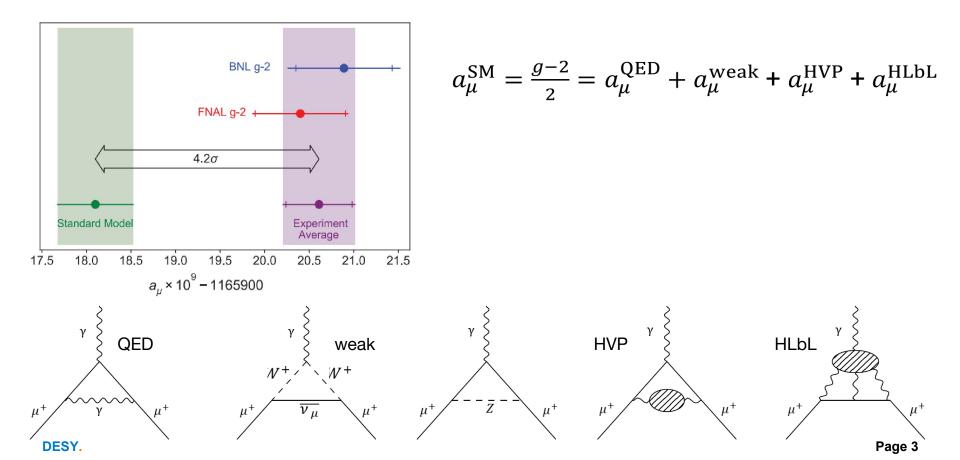
Hadronic Vacuum Polarisation measurements at Belle II

Tommy Martinov On behalf of the Belle II Collaboration

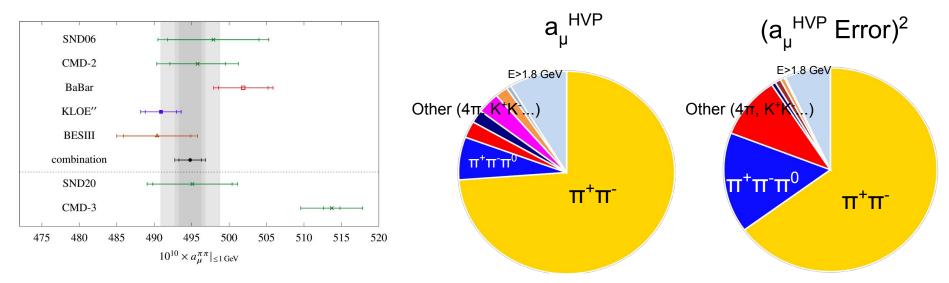


HELMHOLTZ

Outline

- Introduction
- SuperKEKB / Belle II
- Radiative return method
- HVP measurements
 - $\circ \quad e^+e^- \to \pi^+\pi^-$
 - $\circ \quad e^+e^- \to \pi^+\pi^-\pi^0$
 - Background rejection
 - Corrections
 - a_{μ} extraction
 - Systematics

Muon g - 2

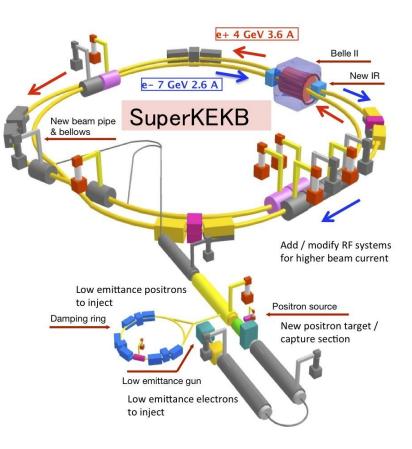


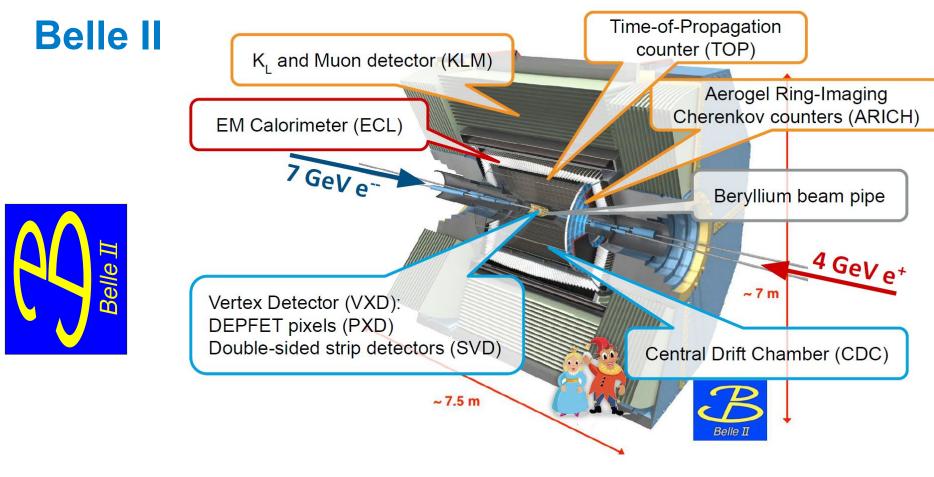
Introduction

 $a_{\mu}^{\text{HVP, LO}} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} \frac{K(s)}{s} R(s) ds$

- HVP: **largest uncertainty** for a_u
- Belle II
 - Measurement of various e⁺e⁻ → hadrons cross-sections

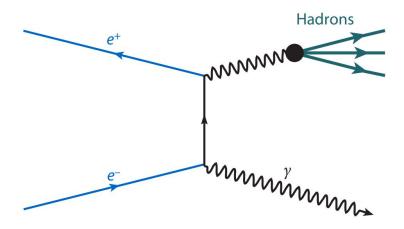
$$R(s) = \frac{\sigma_0(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$


SuperKEKB


- Energy asymmetric e⁺e⁻ collider at c.m energy = 10.58 GeV/c²
 - $\circ \quad \text{Clean environment to study } e^+e^- \to q\overline{q}$
- World record luminosity: 4.7 · 10³⁴ cm⁻² s⁻¹
- 424 fb⁻¹ collected so far

DESY.

• Currently in Long Shutdown 1


PXD upgrade coming after LS1

Radiative return method

- Use ISR photon to effectively scan the c.m. energy
 - Scan hadronic system invariant mass \rightarrow energy dependent cross-section measurement

$$\frac{dN_{\text{signal}}}{dM} \propto \sigma_{e^+e^- \to \text{hadrons}}^0(\sqrt{s'})$$

• Used in the past in BaBar, KLOE, BESIII

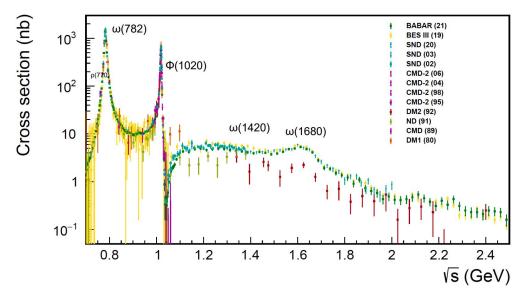
Measurements

• New low-multiplicity triggers

- Two independent triggers: tracker and calorimeter
- ISR processes separated from other radiative effects
- \rightarrow ~100% efficiency for energetic ISR photons (> 2 GeV/c², 20° < θ < 160°)

- Two channels currently under study
 - $\circ \quad e^+e^- \to \pi^+\pi^-$
 - $\circ \quad e^+e^- \to \pi^+\pi^-\pi^0$

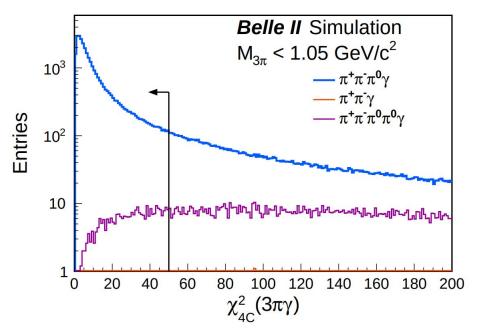
$e^+e^- \rightarrow \pi^+\pi^-$ at Belle II


- The largest contribution to $a_u^{HVP} \sim 73 \%$
- Target 0.5% precision using 363 fb⁻¹ data
- Following BaBar method as a baseline: Phys. Rev. D 104, 112003 (2021)
 - \circ Based on measurement of $\pi\pi/\mu\mu$ ratio with ISR
- Systematics dominated measurement
- Implementation of kinematic fitting tools
 - Useful for reduction of background and correction of tracking efficiency
- MC-level study ongoing
- Design of data-driven efficiency corrections for tracking, trigger and $\pi/\mu/K$ ID ongoing

- Latest measurement from BaBar: Phys. Rev. D 104, 112003 (2021)
- In Belle II

DESY.

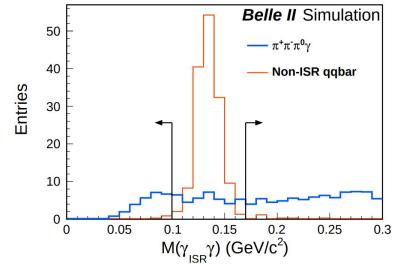
- $\pi^{+}\pi^{-}\pi^{0}$ mass range : [0, 1.05], [1.05, 2.0], [2.0, 3.5] GeV/c² Ο
- First region contains ω and ϕ resonances Ο
- Measurement of $a_{\mu}(3\pi)$ in range [0.62, 2.0] GeV/c² Dataset : 190 fb⁻¹ Ο
- 0



Page 10

Event selection

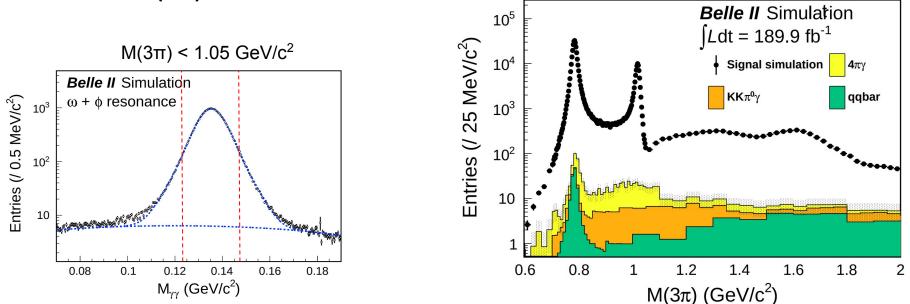
- Two tracks + three photons : $e^+e^- \rightarrow \pi^+\pi^-\pi^0 (\rightarrow \gamma \gamma) \gamma_{LSR}$
 - **Tracks** : ensure that track originates close to the interaction point
 - Photons : at least one photon must be energetic ISR (E_{CMS} > 2 GeV/c² in barrel ECL)
- π⁰ reconstruction
 - Invariant mass of two photons within 0.123 - 0.147 GeV/c²


• Select events using χ^2 kinematic fit with 4-momentum conservation constraint under $e^+e^- \rightarrow \pi^+ \pi^- \pi^0 \gamma$ hypothesis

Event selection

Cuts to reduce remaining backgrounds

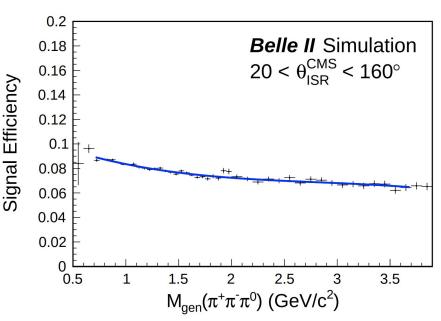
- Background containing **no real** π^{0} : $e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma$, $\pi^{+}\pi^{-}\gamma$, $\mu^{+}\mu^{-}\gamma$
- Charged kaon : $e^+e^- \rightarrow K^+ K^- \pi^0 \gamma$
- $\circ \quad e^+e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \gamma$
- Background containing **no real ISR photon**: non-ISR $q\overline{q}$ and $\tau^{+}\tau^{-}$
 - High-momentum $\rho \to \pi^+ \pi^0$
 - ISR candidate from π^0 decay
 - ISR-like photon from merged π^0 photon pair


Background corrections

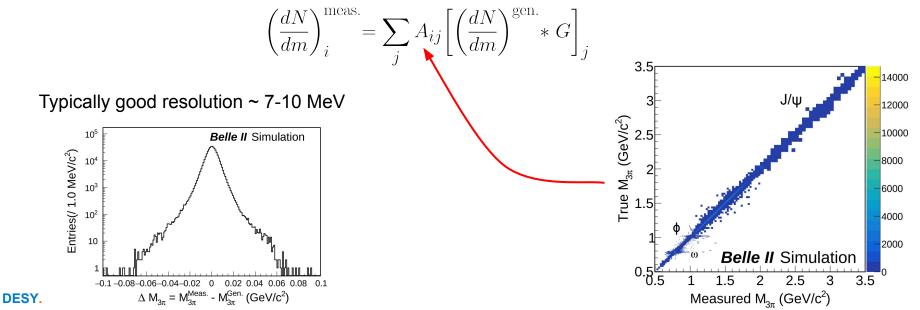
- **Control samples**: invert background rejection cuts
- Data-driven corrections to M(3π)

- Final State Radiation
 - Photon emitted from **final state charged pions**: **negligible** contribution
 - Photon emitted from quarks
 - Dominated by production of C = +1 resonances decaying to $\pi^+ \pi^- \pi^0$: $\eta \gamma$, $a_1(1260)\gamma$, $a_2(1320)\gamma$...
 - Contribution estimated from perturbative QCD and sum of Breit-Wigner widths
 - Large uncertainties but overall small contribution

Signal extraction


- $M(\pi^+\pi^-\pi^0)$ is split in ~200 bins in [0, 3.5] GeV/c² range
- Signal is extracted from $M(\gamma\gamma)$ distribution in each $M(3\pi)$ bin
 - Integration in range (123, 147) MeV/c² \rightarrow number of events in M(3 π) bin
 - Combinatorial background is rejected
- Obtain M(3π) distribution

Efficiency corrections


• Detection efficiency estimated using MC

- selected / generated # of events
- Data-MC corrections applied
 - Trigger efficiency
 - High energy photon detection efficiency
 - Tracking efficiency
 - $\circ \quad \pi^0 \text{ efficiency}$
 - $\circ \quad \chi^2 \ \text{selection}$
 - Background reduction cut efficiency
- Systematic uncertainties derived together with corrections

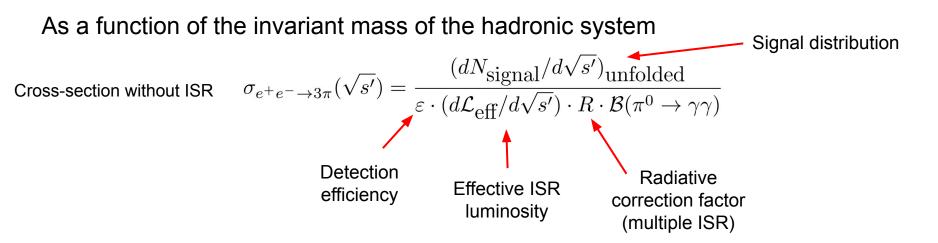
Unfolding

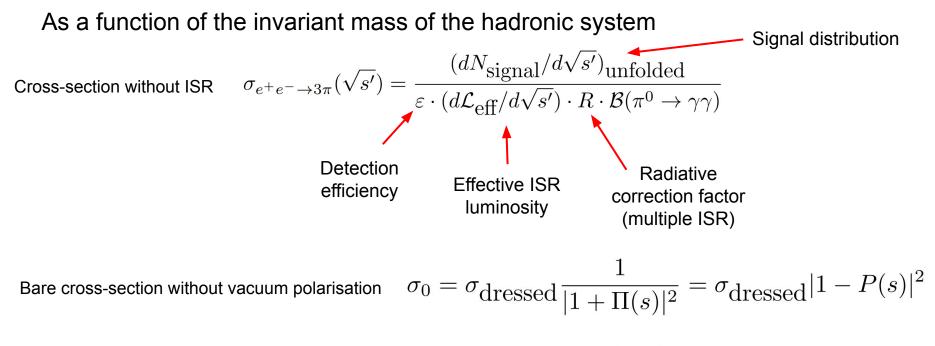
- Unfolding is applied to background subtracted spectrum
 - Mitigate detector response and FSR
 - \circ Kinematic fit constrained by beam 4-momentum and π^0 mass
- Gaussian convolution fit to ω , ϕ and J/ ψ resonances

As a function of the invariant mass of the hadronic system

$$\text{Cross-section without ISR} \quad \sigma_{e^+e^- \to 3\pi}(\sqrt{s'}) = \frac{(dN_{\text{signal}}/d\sqrt{s'})_{\text{unfolded}}}{\varepsilon \cdot (d\mathcal{L}_{\text{eff}}/d\sqrt{s'}) \cdot R \cdot \mathcal{B}(\pi^0 \to \gamma\gamma)}$$

As a function of the invariant mass of the hadronic system


$$\text{Cross-section without ISR} \quad \sigma_{e^+e^- \to 3\pi}(\sqrt{s'}) = \frac{(dN_{\text{signal}}/d\sqrt{s'})_{\text{unfolded}}}{\varepsilon \cdot (d\mathcal{L}_{\text{eff}}/d\sqrt{s'}) \cdot R \cdot \mathcal{B}(\pi^0 \to \gamma\gamma)}$$


Signal distribution

As a function of the invariant mass of the hadronic system

Cross-section without ISR
$$\sigma_{e^+e^- \to 3\pi}(\sqrt{s'}) = \frac{(dN_{signal}/d\sqrt{s'})_{unfolded}}{\varepsilon \cdot (d\mathcal{L}_{eff}/d\sqrt{s'}) \cdot R \cdot \mathcal{B}(\pi^0 \to \gamma\gamma)}$$

Detection efficiency

As a function of the invariant mass of the hadronic system Cross-section without ISR $\sigma_{e^+e^- \rightarrow 3\pi}(\sqrt{s'}) = \frac{(dN_{\text{signal}}/d\sqrt{s'})_{\text{unfolded}}}{\varepsilon \cdot (d\mathcal{L}_{\text{eff}}/d\sqrt{s'}) \cdot R \cdot \mathcal{B}(\pi^0 \rightarrow \gamma\gamma)}$ Detection efficiency Effective ISR luminosity

$$a_{\mu}(3\pi) = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi^2}}^{\infty} \frac{K(s)}{s} R(s) ds$$

DESY.

Page 22

Systematics

- **Result** in range: [0.62, 2.0] GeV/c²
- Major systematic uncertainties
 - $\circ ~~\pi^0$ and tracking efficiencies
 - In M(3π) > 1.05 GeV/c², the uncertainty of selection efficiency is dominant
- For a_µ(3π), the total uncertainty is expected to be ~2% including stat. uncertainty of 0.5%
- The results will be released within a few months

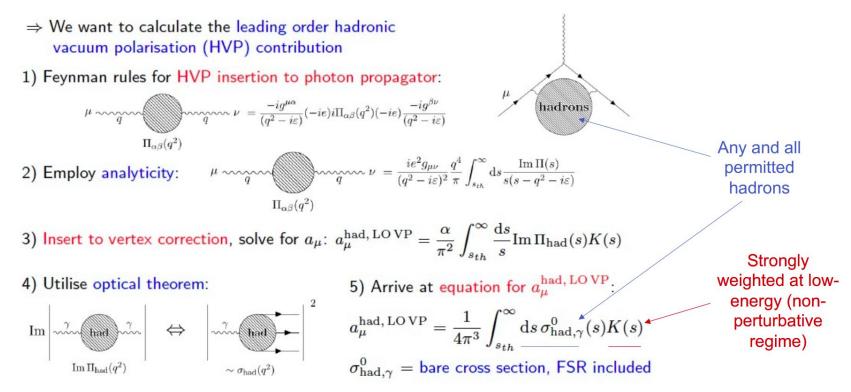
	Systematic uncertainty (%)		
Source	M < 1.05 GeV/c ²	M > 1.05 GeV/c ²	
Trigger	0.2	0.2	
ISR photon detection	0.7	0.7	
Tracking	0.8	0.8	
π^0 reconstruction	1.0	1.0	
χ^2 distribution	0.3	0.3	
Selection	0.2	1.9*	
Integrated luminosity	0.7	0.7	
Radiative correction	0.5	0.5	
Total systematics	1.8	2.6	
Total statistics	0.5		
Total	1.9		

*Statistical error dominant

Summary

- Belle II has collected **424 fb⁻¹ of data**
 - Data taking restarting in February 2024 after Long Shutdown 1

• Two active HVP measurements


- \circ e⁺e⁻ → π⁺π⁻: target 0.5% precision
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0$: ~2% precision with 190 fb⁻¹ of data

• Expect **systematic uncertainties** to **decrease** as we understand our detector better and analyses are refined

THANK YOU FOR YOUR ATTENTION

BACKUP

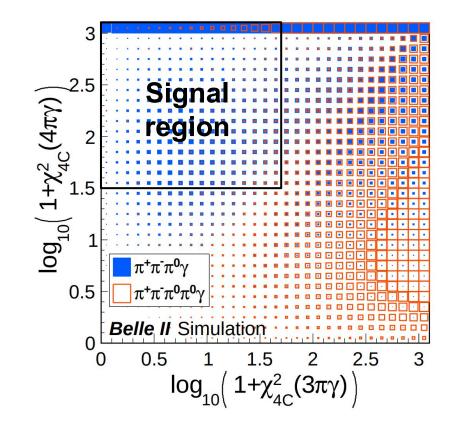
Dispersive method

 \Rightarrow Similar dispersion integrals for NLO and NNLO HVP

Kernel function

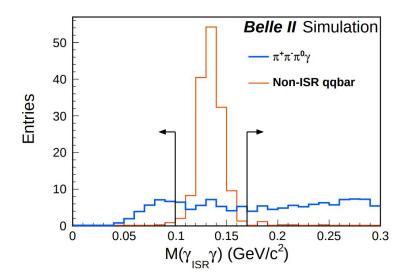
$$K(s) = \frac{x^2}{2}(2-x^2) + \frac{(1+x^2)(1+x)^2}{x^2} \left(\log(1+x) - x + \frac{x^2}{2}\right) + \frac{1+x}{1-x}x^2\log x$$

$$x = \frac{1 - \beta_{\mu}}{1 + \beta_{\mu}} \qquad \qquad \beta_{\mu} = \sqrt{1 - \frac{4m_{\mu}^2}{s}}$$


Monte Carlo generators

Source	Generator	
$\pi^+\pi^-\pi^0\gamma$	PHOKHARA	
$\pi^+\pi^-\pi^0\gamma$ (fake π^0)	PHOKHARA	
$\pi^+\pi^-\gamma$	PHOKHARA	
$\pi^+\pi^-\pi^0\pi^0\gamma$	PHOKHARA	
$e^+e^-~(\gamma)$	BABAYAGA.NLO	
$\gamma\gamma$	BABAYAGA.NLO	
$\mu^+\mu^-\gamma$	KKMC	
$K^0_S \; K^0_L \; \gamma$	PHOKHARA	
$u\overline{u}$	KKMC + PHYTHIA + EVTGEN	
$d\overline{d}$	KKMC + PHYTHIA + EVTGEN	
$s\overline{s}$	KKMC + PHYTHIA + EVTGEN	
$c\overline{c}$	KKMC + PHYTHIA + EVTGEN	
$\tau^+\tau^-$	KKMC + TAUOLA	

Event selection

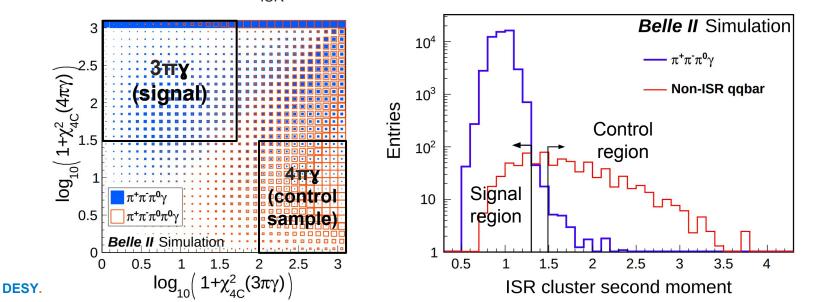

Cuts to reduce remaining backgrounds

- Background containing **no real** π^{0} : $e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma$, $\pi^{+}\pi^{-}\gamma$, $\mu^{+}\mu^{-}\gamma$
 - Pion/Electron ID: Likelihood $\pi/e > 0.1$
 - $\blacksquare \quad \mathsf{M}^2_{\mathsf{recoil}}(\pi^+ \pi^-) > 4 \; \mathrm{GeV}^2$
- Charged kaon : $e^+e^- \rightarrow K^+ K^- \pi^0 \gamma$
 - Pion/Kaon ID: Likelihood π/K > 0.1
- $\circ \quad e^+e^- \to \pi^+ \pi^- \pi^0 \pi^0 \gamma$
 - **Reconstruct** $\pi^+ \pi^- \pi^0 \pi^0 \gamma$
 - Four-momentum kinematic fit under $e^+e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \gamma$ hypothesis

Event selection

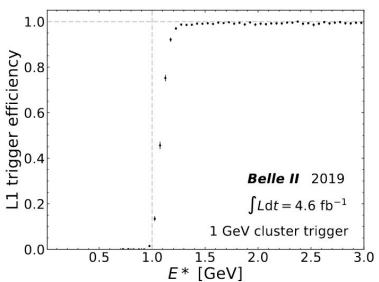
- Cuts to reduce remaining backgrounds
 - Background containing **no real ISR photon**: non-ISR $q\overline{q}$ and $\tau^+\tau^-$
 - High-momentum $\rho \rightarrow \pi^+ \pi^0$: M($\pi^+ \gamma_{ISR}$) > 2 GeV
 - ISR candidate from π^0 decay: M($\gamma_{ISR}\gamma$) cut
 - ISR-like photon from merged π^0 photon pair

Background corrections

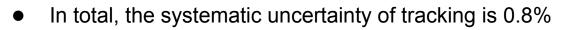

Estimate by determining a mass-dependent data-MC scale factor using a control sample

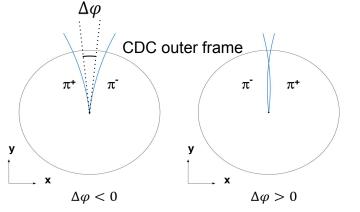
 $N_{i, \mathrm{Signal}}^{\mathrm{MC}} \rightarrow N_{i, \mathrm{Signal}}^{\mathrm{MC}}$ $\overline{\mathrm{V}^{\mathrm{MC}}_{i,\mathrm{Control}}}$ $e^+e^- \rightarrow K^+K^-\pi^0 y$: Invert π/K ID : $L(\pi/K) > 0.1 \Rightarrow L(\pi/K) < 0.1$

 $J_{i,{\rm Control}}^{
m data}$


Page 32

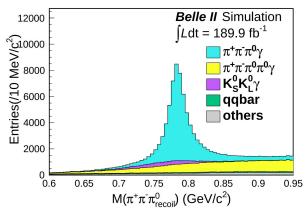
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$: Reconstruct $\pi^+\pi^-\pi^0\pi^0\gamma$ and select $\chi^2(4\pi\gamma) < 30$
- Non-ISR q \overline{q} : 0.10 < M($\gamma_{ISR}\gamma$) < 0.17 GeV / large cluster second moment


Trigger efficiency


- ISR events are triggered by the energy trigger (E_{total} > 1 GeV) in the calorimeter
- The efficiency can be measured by using the events triggered independently by the track trigger
 - Efficiency for energetic ISR > 99%
- The systematic uncertainty related to trigger is well suppressed, 0.2%.
- The high trigger efficiency for energetic ISR is also beneficial for other ISR processes

Tracking efficiency

- Tracking efficiency is confirmed by tag-and-probe method using T pairs.
- Track loss due to shared hits on the drift chamber is confirmed.
 - Evaluate using the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$ process at the ω resonance
- Define $\Delta \varphi = \varphi (\pi^+) \varphi(\pi^-)$
- The inefficiency due to track loss is given by $f = \frac{N(\Delta \phi < 0) N(\Delta \phi > 0)}{2N(\Delta \phi < 0)}$ • The track loss in MC is 4%



π^0 efficiency correction

- π^0 detection efficiency is 50-60%
- Evaluate efficiency using the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$ events around ω resonance

$$\pi^{0} \text{efficiency} = \frac{N(\text{Fullreconstruction} : \pi^{+}\pi^{-}\pi^{0}\gamma_{\text{ISR}})}{N(\text{Partial reconstruction} : \pi^{+}\pi^{-}\gamma_{\text{ISR}})}$$

- Partial reconstruction $\pi^+\pi^-\gamma$: ISR + two tracks
- The squared 3π mass M($\pi^+\pi^-\pi^0_{\text{recoil}}$) is defined as $M^2(\pi^+\pi^-\pi^0_{\text{recoil}}) = (p_{\pi^+} + p_{\pi^-} + p_{\text{recoil}})^2$
- Recoil momentum p_{recoil} is determined by kinematic fit to $\pi^+\pi^-\gamma$ with hypothesis that recoil mass equals π^0 mass (1-constraint)
- Fit on M($\pi^+\pi^-\pi^0_{recoil}$) distribution around ω resonance to estimate the number of $3\pi\gamma$
 - \circ Count the number of events in ω region



Page 35

π^0 efficiency correction

- π^{0} detection efficiency is 50-60%
- Evaluate efficiency using the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$ events of ω resonance $\pi^{0} \text{efficiency} = \frac{N(\text{Fullreconstruction} : \pi^{+}\pi^{-}\pi^{0}\gamma_{\text{ISR}})}{N(\text{Partial reconstruction} : \pi^{+}\pi^{-}\gamma_{\text{ISR}})}$

- Full reconstruction: partial reconstruction + π^0 selection + $\chi^2 < 50$
- Fit M($\gamma\gamma$) with signal extraction parameters in ω region
 - Signal: Novosibirsk function + Gaussian (fixed parameters) Ο
 - Background: Quadratic function (floating parameters) Ο
- The π^0 efficiency is independently evaluated by data-MC comparison
- The systematic uncertainty related to π^0 is 1.0%
- The uncertainty is evaluated by variations of the $M(\gamma \gamma)$ signal pdf, background pdfs and selections

Effective ISR Luminosity

$$\frac{d\mathcal{L}_{\text{eff}}}{d\sqrt{s'}}(\sqrt{s'}) = \frac{2\sqrt{s'}}{s} \frac{\alpha}{\pi} \left(\frac{s^2 + s'^2}{s(s-s')} \ln \frac{1 + \cos \theta_{\gamma}}{1 - \cos \theta_{\gamma}} - \frac{s-s'}{s} \cos \theta_{\gamma}\right) \mathcal{L}_{\text{int}}$$

$$L_{int} = 189.88 \pm 0.05 \pm 2.85$$

200 - 0 - 1600

Radiative correction

- Take into account multiple ISR photons
- Calculated using PHOKHARA
- μμγ events simulated with LO+NLO ISR, VP effects, without FSR
- R is very close to 1 and associated uncertainty is relatively small (~0.5%)

$$R = \frac{\sigma(e^+e^- \to \mu^+\mu^- + \text{multiple }\gamma_{\text{ISR}})}{\sigma(e^+e^- \to \mu^+\mu^- + \text{single }\gamma_{\text{ISR}})}$$

Previous measurements

	BABAR 2021	BESIII 2019	Combination as of 2017
	Radiative return	Radiative return	
Method	$\sqrt{s} = 10.58 \mathrm{GeV}$	$\sqrt{s} = 3.773 \text{ GeV}$	-
	Tagged-ISR	Tagged $+$ Untagged ISR	
Int. Luminosity	$469 {\rm fb^{-1}}$	$2.93 {\rm fb^{-1}}$	-
$a_{\mu}(3\pi) \times 10^{10}$	$45.86 \ (< 2 \ \text{GeV})$	$49.77 \ (< 3.0 \ \text{GeV})$	$46.20 \ (< 1.8 \ \text{GeV})$
Stat. unc. $(\%)$	0.3	1.06	0.9
Total Syst. unc. (%)	1.3	1.9	3.0
Luminosity (%)	0.4	1.1	-
Photon eff. $(\%)$	0.2	0.9	H
Tracking $(\%)$	0.54	0.4 - 1.0	-
π^0 eff. (%)	0.5	0.4	-
Trigger (%)	0.7	-	-