Discussion on e^+e^- data and MC generators for ${\sf a}_\mu^{\sf HLO}$

S. E. Müller

Helmholtz-Zentrum Dresden-Rossendorf

Second Workshop on Muon Precision Physics, Liverpool November 8, 2023

Mitglied der Helmholtz-Gemeinschaft

S. E. Müller | HZDR | http://www.hzdr.de

Current situation Nov. 2023

From Alex Keshavarzi's presentation at Lattice 2023:

Situation March 2004...

From S. Müller's presentation at DPG 2004 in Cologne:

Mitglied der Helmholtz-Gemeinschaft S. E. Müller | HZDR | http://www.hzdr.de

Situation March 2004...

From S. Müller's presentation at DPG 2004 in Cologne:

Electron anomalous magnetic moment and α_{em}

Determination of fine structure constant α_{em} from measurement of a_e and direct α_{em} determination from atomic recoil frequency in matter-wave interferometers:

Electron anomalous magnetic moment and α_{em}

Determination of fine structure constant α_{em} from measurement of a_e and direct α_{em} determination from atomic recoil frequency in matter-wave interferometers:

Hadronic cross section measurements

Three ways to obtain hadronic cross sections:

- **Energy scan:** Change beam energy changed to desired value.
 - e.g. at VEPP-2M/VEPP2000 colliders in Novosibirsk (SND/CMD-experiments)

Hadronic cross section measurements

Three ways to obtain hadronic cross sections:

- **Energy scan:** Change beam energy changed to desired value.
 - e.g. at VEPP-2M/VEPP2000 colliders in Novosibirsk (SND/CMD-experiments)
 - Initial State radiation: Run at fixed energy, use initial state radiation process to access lower lying energies or resonances
 - e.g. at DAΦNE, PEP-II, BEPC and KEKB meson factories (KLOE, BaBar, BES, BELLE -experiments).

Hadronic cross section measurements

Three ways to obtain hadronic cross sections:

- **Energy scan:** Change beam energy changed to desired value.
 - e.g. at VEPP-2M/VEPP2000 colliders in Novosibirsk (SND/CMD-experiments)
 - Initial State radiation: Run at fixed energy, use initial state radiation process to access lower lying energies or resonances
 - e.g. at DAΦNE, PEP-II, BEPC and KEKB meson factories (KLOE, BaBar, BES, BELLE -experiments).
- **Tau data:** Derive cross sections from τ spectral functions using CVC theorem.
 - e.g. at LEP, CESR and KEKB colliders (ALEPH, L3, OPAL, CLEO, BELLE -experiments).

Precise measurements of hadronic cross sections to be used in the dispersion integral for $\mathbf{a}_{\mu}^{\text{HLO}}$ need reliable estimates of the radiative corrections involved:

- Corrections for initial state radiation effects (radiator function)
- Treatment of final state radiation
- Normalization with Bhabha or muon events
- Effects of Vacuum Polarization

Generators used in the analyses (Alex Keshavarzi's presentation at Lattice 2023):

MC generators for exclusive channels (exact	
NLO + Higher Order terms in some approx)	

MCGPJ (VEPP-2M, VEPP- 2000)	e⁺e⁻ → e⁺e⁻,μ⁺μ⁻, π⁺π⁻,	0.2%	photon jets along all particles (collinear Structure function) with exact NLO matrix elements
BabaYaga@NLO (KLOE, BaBar, BESIII)	e⁺e⁻ → e⁺e⁻,μ⁺μ⁻, γγ	0.1%	QED Parton Shower approach with exact NLO matrix elements

MC generators for ISR (from approximate to exact NLO)

EVA (KLOE)	e*e [.] →π ⁺ π ⁻ γ	O(%)	Tagged photon ISR at LO + Structure Function FSR: point-like pions
AFKQED (BaBar)	e⁺e →π⁺π¬γ, 	depends on the event selection (can be as good as Phokhara)	ISR at LO +Structure Function
PHOKHARA (KLOE, BaBar BESIII)	e⁺e [.] →π⁺π⁻γ, μ⁺μ⁻γ, 4πγ,	0.5%	ISR and FSR(sQED+Form Factor) at NLO

... and more!

Initial state radiation measurements are using the Radiative Return to energies below the collider energy \sqrt{s} .

Emission of hard γ in the bremsstrahlung process reduces available energy to produce hadronic system.

Relate measured differential cross section $d \sigma_{had+\gamma}/d M_{had}^2$ to hadronic cross section σ_{had} using radiator function $H(s, M_{had}^2)$:

Uses precise calculation of radiator function $H(s, M_{had}^2)$, e.g. from PHOKHARA Monte Carlo event generator.

- Assumes factorization of ISR part
- Final State Radiation (FSR) needs dedicated treatment

Presence of "Two-Virtual-Photon" (TVP) contribution spoils the ISR factorization - needs to be treated as a correction.

KLOE10 range extends down to 0.32 GeV...

KKMC-PHOKHARA comparison

Comparison of ISR effect in the process $e^+e^- \rightarrow \mu^+\mu^-\gamma$ with **PHOKHARA** and the **KKMC** generator (S. Jadach, arXiv:hep-ph/0506180):

- KKMC uses second order CEEX matrix element (complete NLL and NNLL contributions)
- also analytical formula is used ("KKsem")

A 0.25% difference was found in central region (larger deviation at high Q² due to missing soft photon resummation in **PHOKHARA**).

Charge asymmetry observable

The forward-backward asymmetry $\mathcal{A}_{FB}(Q^2) = \frac{N(\theta_{\pi^+} > 90^\circ) - N(\theta_{\pi^+} < 90^\circ)}{N(\theta_{\pi^+} > 90^\circ) + N(\theta_{\pi^+} < 90^\circ)} (Q^2)$ can be used to

test the validity of the description of the various mechanisms of the $\pi^+\pi^-$ final state photon emission:

Charge asymmetry observable

The forward-backward asymmetry $\mathcal{A}_{FB}(Q^2) = \frac{N(\theta_{\pi^+} > 90^\circ) - N(\theta_{\pi^+} < 90^\circ)}{N(\theta_{\pi^+} > 90^\circ) + N(\theta_{\pi^+} < 90^\circ)} (Q^2)$ can be used to

test the validity of the description of the various mechanisms of the $\pi^+\pi^-$ final state photon emission:

Charge asymmetry observable

The forward-backward asymmetry $\mathcal{A}_{FB}(Q^2) = \frac{N(\theta_{\pi^+} > 90^\circ) - N(\theta_{\pi^+} < 90^\circ)}{N(\theta_{\pi^+} > 90^\circ) + N(\theta_{\pi^+} < 90^\circ)} (Q^2)$ can be used to

test the validity of the description of the various mechanisms of the $\pi^+\pi^-$ final state photon emission:

BaBar studies: AFKqed vs. PHOKHARA

Study of BaBar collaboration on events with 2 hard photons claims discrepancies between data and PHOKHARA, while Afkqed shows better agreement (arXiv:2308.05233):

τ data:

Relate data from au decays to e^+e^- data using CVC theorem:

τ data:

Relate data from au decays to e^+e^- data using CVC theorem:

Isospin symmetry breaking effects need to be taken into account

Conclusions

- The current situation is not optimal...
 - ...but it could be worse.
- We need Monte Carlo generators to evaluate and estimate radiative corrections
 - Normalization (Bhabha, muons,...)
 - ISR corrections (Radiator function)
 - Treatment of final state radiation
- Many generators available, nevertheless need to work on
 - implementation of higher order corrections
 - efficiency of calculation (CPU cost)
 - cross checks and comparisons between generators (and with data)
- Let's not fully forget data from τ -decays.

