

SHERPA Event Generator

Alan Price on behalf of the Sherpa Authors

SHERPA Framework

Automated Hard Interaction

- ✤ LO, NLO QCD/EW, NNLO QCD
- * Internal ME generators AMEGIC/COMIX

Radiative Corrections

- ★ Catani-Seymour based PS
- ★ DIRE, YFS QED resummation
- ★ EW Sudakovs

Multiple interactions

✤ Sjöstrand-Zijl model

Hadronization

★ Cluster hadronization model

Hadron Decays

- * Phase space or EFTs,
- ★ YFS QED corrections

Alan Price

SciPost Phys. 7 (2019) 3, 034

SHERPA Framework

Sherpa has traditionally focused on LHC physics, but is becoming more broad in its application

Lepton-Lepton Colliders

YFS Resummation for Future Lepton-Lepton Colliders in SHERPA <u>SciPost Phys. 13 (2022) 2, 026,</u> F.Krauss, A.P, M. Schönherr

Measuring Hadronic Higgs Boson Branching Ratios at Future Lepton Colliders <u>2306.03682</u> M.Knobbe, F.Krauss, D.Reichlet, S. Schumann

Lepton-Hardron Colliders

(N)NLO+NLL' accurate predictions for plain and groomed 1jettiness in neutral current DIS <u>JHEP 09 (2023) 194</u> M.Knobbe, D.Reichelt, S.Schumann

Neutrino Experiments

Novel event generator for the automated simulation of neutrino scattering <u>Phys.Rev.D 105 (2022) 9, 096006</u> J.Isaacson, S.Höche, D.Gutierrez, N.Rocco

Alan Price

SciPost Phys. 7 (2019) 3, 034

What can Sherpa do for lepton collider experiments?

YFS Resummation

Alan Price

$$d\sigma = \sum_{n_{\gamma}=0}^{\infty} \frac{e^{Y(\Omega)}}{n_{\gamma}!} d\Phi_{Q} \left[\prod_{i=1}^{n_{\gamma}} d\Phi_{i}^{\gamma} S(k_{i}) \Theta(k_{i}, \Omega) \right] \left(\tilde{\beta}_{0} + \sum_{j=1}^{n_{\gamma}} \frac{\tilde{\beta}_{1}(k_{j})}{S(k_{j})} + \sum_{j< k}^{n_{\gamma}} \frac{\tilde{\beta}_{2}(k_{j}, k_{k})}{S(k_{j})S(k_{k})} + \cdots \right),$$

~Process Independent

- Yennie-Frautschi-Suura allows us to resum soft logs to infinite order

 - The MC implementation developed and championed by the Krakow group Comput.Phys.Commun. 130 (2000) 260-325

Process Dependent

YFS Resummation

$$Y(\Omega) = 2\alpha \sum_{i < j} \left(\mathcal{R}e \ B(p_i, p_j) + \tilde{B}(p_i, p_j, \Omega) \right)$$

$$\begin{split} \mathfrak{Q} &= 2a \sum_{i < j} \left(\mathcal{R}e \ B(p_i, p_j) + \tilde{B}(p_i, p_j, \Omega) \right) \\ \mathcal{B}(p_i, p_j) &= -\frac{i}{8\pi^3} Z_i Z_j \rho_i \rho_j \left[\frac{d^3 k}{k^2} \left(\frac{2p_i \rho_i - k}{k^2 - 2(k \cdot p_j) \theta_j} + \frac{2p_j \rho_j + k}{k^2 + 2(k \cdot p_j) \theta_j} \right)^2 \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[\frac{d^3 k}{k^2} \left(\frac{2p_i \rho_i - k}{k^2 - 2(k \cdot p_j) \theta_j} + \frac{2p_j \rho_j + k}{k^2 + 2(k \cdot p_j) \theta_j} \right)^2 \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d^4 k \ \delta(k^2) (1 - \Theta(k, \Omega)) \left(\frac{p_i}{(p_i \cdot k)} - \frac{p_j}{(p_j \cdot k)} \right)^2 \right] \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_i \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, P_j, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, \Omega) &= \frac{1}{4\pi^2} Z_i Z_j \rho_j \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, \Omega) &= \frac{1}{4\pi^2} Z_i \left[d\Phi_i^* S(k_j) \Theta(k_j, \Omega) \right] \\ \tilde{B}(p_i, \Omega) &$$

$$\begin{split} \Omega) &= 2\alpha \sum_{i < j} \left(\mathcal{R}e \ B(p_i, p_j) + \tilde{B}(p_i, p_j, \Omega) \right) \\ B(p_i, p_j) &= -\frac{i}{8\pi^3} ZZ \beta \theta_j \left[\frac{d^4k}{k^2} \left(\frac{2p_i \theta_j - k}{k^2 - 2(k \cdot p_i) \theta_j} + \frac{2p_j \theta_j + k}{k^2 + 2(k \cdot p_j) \theta_j} \right)^2 \\ \bar{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} ZZ \beta \theta_j \left[\frac{d^4k}{k^2} \left(\frac{2p_i \theta_j - k}{k^2 - 2(k \cdot p_i) \theta_j} + \frac{2p_j \theta_j + k}{k^2 + 2(k \cdot p_j) \theta_j} \right)^2 \\ \bar{B}(p_i, p_j, \Omega) &= \frac{1}{4\pi^2} ZZ \beta \theta_j \left[\frac{d^4k}{k^2} \left(1 - \Theta(k, \Omega) \right) \left(\frac{p_i}{(p_i \cdot k)} - \frac{p_j}{(p_j \cdot k)} \right)^2 \right] \\ d\sigma &= \sum_{n_y = 0}^{\infty} \frac{e^{Y(\Omega)}}{n_y!} d\Phi_Q \left[\prod_{i=1}^{n_y} d\Phi_i^{i} S(k_i) \Theta(k_i, \Omega) \right] \left(\tilde{\beta}_0 + \sum_{j=1}^{n_y} \frac{\tilde{\beta}_1(k_j)}{S(k_j)} + \sum_{j < k = 1}^{n_y} \frac{\tilde{\beta}_2(k_j, k_k)}{S(k_j) S(k_k)} + \cdots \right), \\ \tilde{\beta}_{n_y} &= \sum_{n_y = 0}^{\infty} \tilde{\beta}_{n_y}^{\bar{n}_i + n_y} \qquad \bar{n}_{\gamma} = \# \text{ Virtual Photons} \end{split}$$

$$\begin{split} g_{p,p} &= 2\alpha \sum_{i < j} \left(\mathscr{R}e \ B(p_i, p_j) + \bar{B}(p_i, p_j, \Omega) \right) \\ S(k) &= -\sum_{i j} \frac{\alpha}{4\pi^2} Z_i Z_j \theta_i \theta_j \left(\frac{p_i}{p_i \cdot k} - \frac{p_j}{p_j \cdot k} \right)^2 \\ g_{p,p} &= -\frac{i}{8\pi^2} Z_i Z_j \theta_j \int \frac{d^4k}{k^2} \left(\frac{2p \theta_i - k}{k^2 - 2(k \cdot p_j) \theta_j} + \frac{2p \theta_j + k}{k^2 + 2(k \cdot p_j) \theta_j} \right)^2 \\ p_{p,p_j} &= \frac{1}{4\pi^2} Z_i Z_j \theta_j \int d^4k \ \delta(k^2) (1 - \Theta(k, \Omega)) \left(\frac{p_i}{(p_i \cdot k)} - \frac{p_j}{(p_j \cdot k)} \right)^2 \\ d\sigma &= \sum_{n_y = 0}^{\infty} \frac{e^{\gamma(\Omega)}}{n_{\gamma}!} d\Phi_Q \left[\prod_{i=1}^{n_{\gamma}} d\Phi_i^{\gamma} S(k_i) \Theta(k_i, \Omega) \right] \left(\tilde{\beta}_0 + \sum_{j=1}^{n_{\gamma}} \frac{\tilde{\beta}_1(k_j)}{S(k_j)} + \sum_{j < k}^{n_{\gamma}} \frac{\tilde{\beta}_2(k_j, k_k)}{S(k_j) S(k_k)} + \cdots \right), \\ \tilde{\beta}_{n_{\gamma}} &= \sum_{\bar{n}_{\gamma} = 0}^{\infty} \tilde{\beta}_{n_{\gamma}}^{\bar{n}_i + n_{\gamma}} \qquad \bar{n}_{\gamma} = \text{ $\#$ Virtual Phenometers} \end{split}$$

YFS for FSR

Original YFS was limited to FSR in Sherpa

For boson decays, we have YFS corrections up to NNLO QED and NLO EW.

Eur.Phys.J.C 79 (2019) 2, 143 F.Krauss, A. Lindert, R. Linten, M. Schönherr

7

Photon Splitting

- Photon splitting is also included, which is NNLO correction to YFS
- Captures the logarithmic enhancement for collinear splittings
- ◆ Includes Photons splitting to both charged fermions and scalars
- Currently limited to FSR. ISR implementation underway

L.Flower and M.Schoenherr JHEP 03 (2023), 238

YFS for Leptonic Processes

$$d\sigma = \sum_{n_{\gamma}=0}^{\infty} \frac{e^{Y(\Omega)}}{n_{\gamma}!} d\Phi_{Q} \left[\prod_{i=1}^{n_{\gamma}} d\Phi_{i}^{\gamma} S(k_{i}) \Theta(k_{i}, \Omega) \right]$$

Automated for

How? $\hat{\beta}_0^0$ essentially born Matrix element and Sherpa can automatically construct this

2) $\left[\tilde{\beta}_{0} + \sum_{j=1}^{n_{\gamma}} \frac{\tilde{\beta}_{1}(k_{j})}{S(k_{j})} + \sum_{j,k=1}^{n_{\gamma}} \frac{\tilde{\beta}_{2}(k_{j},k_{k})}{S(k_{j})S(k_{k})} + \cdots \right],$

$$e^+e^- \rightarrow \text{anything}$$

Higher Order Corrections

$$\tilde{\beta}_{0} + \sum_{j=1}^{n_{\gamma}} \frac{\tilde{\beta}_{1}(k_{j})}{S(k_{j})} + \sum_{j,k=1 \atop j < k}^{n_{\gamma}} \frac{\tilde{\beta}_{2}(k_{j},k_{k})}{S(k_{j})S(k_{k})} + \cdots$$

Originally implemented in EEX framework of KKMC

While easy to implement suffers from a lack of accuracy e.g No Initialfinal interference

Solved in KKMC with CEEX corrections

YFS Validation

Alan Price

Sherpa has been intensely validated against **KKMC** Can be extended to low energy and different calculations e.g PHOKARA

Automatic One-Loop Corrections

$\tilde{\beta}_0^1(\Phi_n) = \mathscr{V}(\Phi_n) - \sum \mathscr{D}_{ij}(\Phi_{ij})$

Full One Loop EW contribution Contains IR divergent terms Need a loop generator that can include all lepton masses! Currently only Recola can provide this All or nothing. Cannot separate ISR/FSR

ii

- Fully automated within YFS module
- Constructed from <u>all dipoles</u>
- Really should be limited to leptonic final states only
- Works for massive quarks but should not be combined with QCD resummation

One-Loop Corrections

Alan Price

Loops provided by Recola

<u>Comput.Phys.Commun. 214 (2017) 140-173</u>

Real Corrections

$\tilde{\beta}_1^1\left(\Phi_{n+1}\right) = \mathcal{R}\left(\Phi_{n+1}\right) - \tilde{\beta}_0^0\left(\Phi_n\right)\sum \tilde{S}_{ij}(k)$

- Real photon correction to born process
- ✤ In Principle, can be taken from AMEGIC or COMIX

Alan Price

- Subtraction term calculate from the eikonals of all dipoles
- Automated within YFS

14

Real Corrections

Sherpa for $e^+e^- \rightarrow \pi^+\pi^-$

In principle, not too difficult. One just has to add the amplitudes

For B-factories we already have dedicated $e^+e^- \rightarrow B\bar{B}$ channels, can adapt to $e^+e^- \rightarrow \pi^+\pi^-$

Some dedicated treatment needed for form-factor

ISR and FSR can then be calculated using YFS

Phys.Rev.Lett. 128 (2022) 14, 142005

Sherpa for $\mu^+ e^- \rightarrow \mu$ '*e*

New fixed target mode allowing Sherpa to calculate $\mu^+ e^- \rightarrow \mu^+ e^-$ for MUonE

Excellent agreement at LO with Mesmer. Predictions correspond to setup 1 in JHEP 11 (2020) 028

Application of YFS to this process needs further study, still preliminary \rightarrow Outcome of this workshop?

YFS certainly feasible to achieve sub-permille precision

$\mu^+e^- \rightarrow \mu^+e^-$	LO	YFS _{Born}	YFS _{EEX}
Sherpa	245.034(3)	261.296(9)	256.315(
	LO	NLO	NNLO

Table 1: Total cross-sections for $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}$ in μ b.

Alan Price

8)

1)

The SHERPA 2.2 event generator framework

approximate electroweak corrections

NNLO QCD with parton showers

selected processes only

Parton Showers

CS-Shower (default)

 dipole shower • fully massive • QED splittings

DIRE

 hybrid dipole-parton shower algorithm • fully massive

000000000

Soft Physics

Hadronisation

- AHADIC: a cluster fragmentation model
- interface to Pythia string fragmentation

Hadron Decays

- decay tables for hadronic resonances
- dedicated form-factor models, e.g. τ, B, Λ
- spin correlations
- YFS QED corrections
- partonic channels

Underlying Event

- multiple parton interactions
- beam-remnant colours
- intrinsic transverse momentum

Interfaces/Outputs

Output Formats

- HepMC
- LHEF
- Root Ntuple

Interfaces

- RIVET analyses
- C++/Python ME access
- MCgrid
- integration into ATLAS/CMS

Code/Docu

- HepForge
- GitLab
- online documentation

sherpa.hepforge.org

gitlab.com/sherpa-team/sherpa