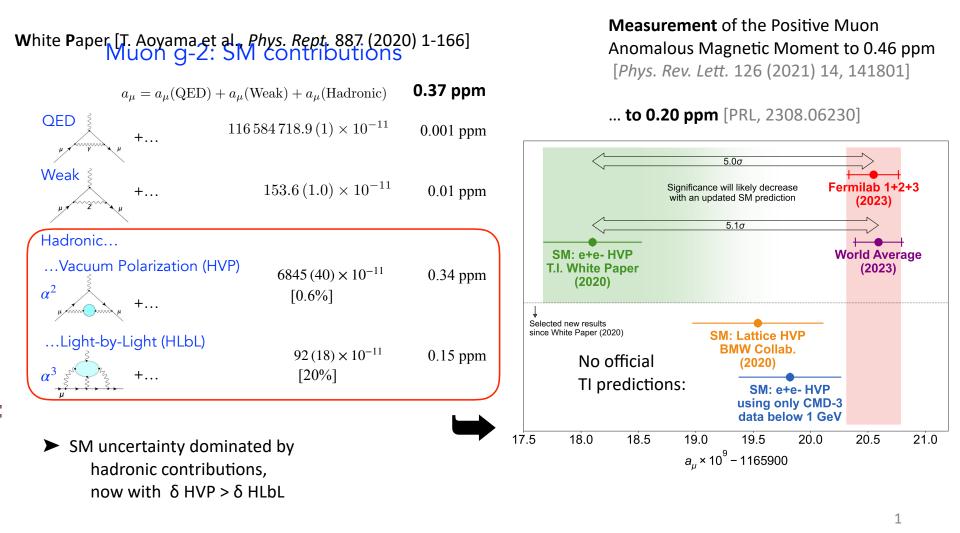
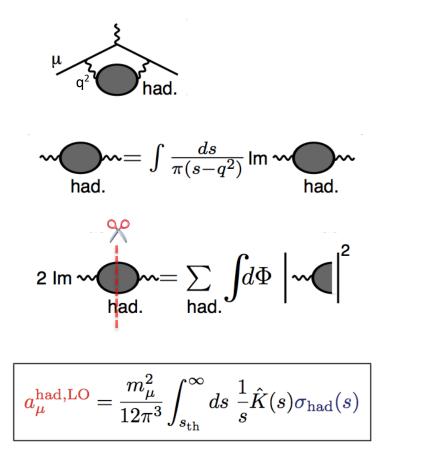
8th Nov. 2023


HVP Dispersive (e⁺e⁻)

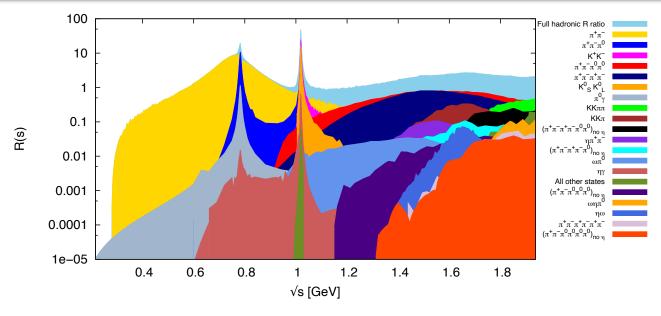

- Data-driven HVP: status & issues
- Theory Initiative
- Pathways to solving the puzzles
 - Strong 2020 activities
 - Liverpool⁺ efforts

SM prediction from Theory Initiative vs. Experiment

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{hadronic}} + a_{\mu}^{\text{NP?}}$$

a^{HVP}: Basic principles of **dispersive** data-driven method

One-loop diagram with hadronic blob = integral over q² of virtual photon, 1 HVP insertion

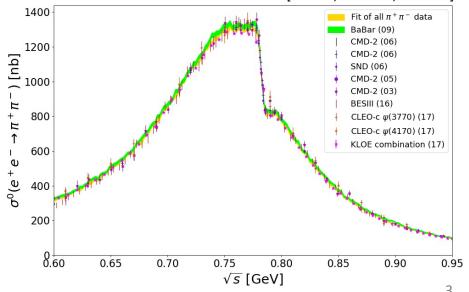

Causality analyticity dispersion integral: obtain HVP from its imaginary part only

Unitarity ➡ Optical Theorem: imaginary part (`cut diagram') = sum over |cut diagram|², i.e. ∝ sum over all total hadronic cross sections

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$

- Total hadronic cross section σ_{had} from > 100 data sets for $e^+e^- \rightarrow hadrons$ in > 35 final states
- Uncertainty of $a_{\mu}^{\mu\nu\rho}$ prediction from statistical & systematic uncertainties of input data
- pQCD only at large s, **no modelling** of $\sigma_{had}(s)$, direct data integration

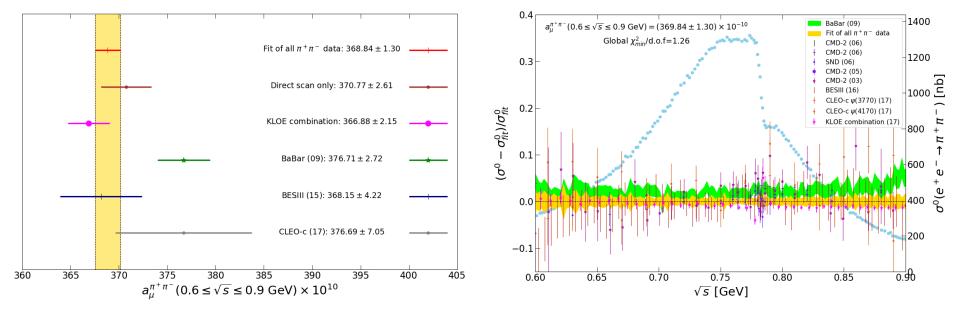
HVP disp: Landscape of $\sigma_{had}(s)$ data. Most important **reaction channel**



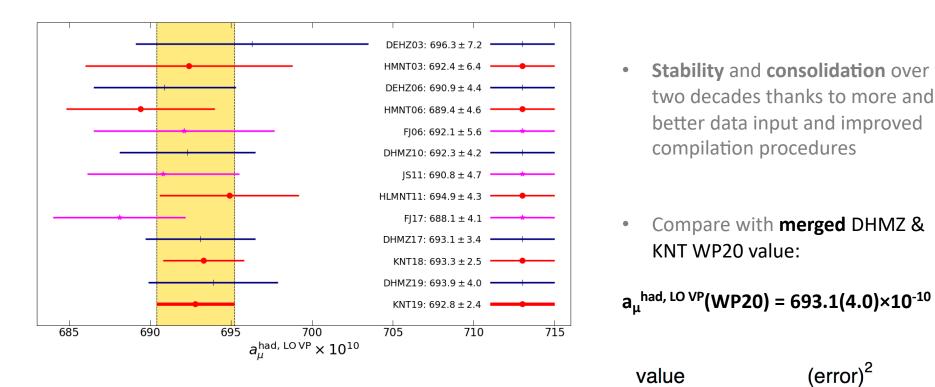
[KNT18, PRD97, 114025]

- hadronic channels for • energies below 2 GeV
- dominance of 2π •

$\pi^+\pi^-$:


- Combination of >30 data sets, >1000 points, ٠ contributing >70% of total HVP
- Precise measurements from 6 independent • experiments with different systematics and different radiative corrections
- Data sets from Radiative Return dominate, • until now...

[KNT19, PRD101, 014029]


a_{μ}^{HVP} : $\pi^+\pi^-$ channel KLOE vs. Babar puzzle, enlarged WP error

[Plots from KNT19]

- Tension between different sets, especially between the most precise 4 sets from BaBar and KLOE
- Inflation of error with local χ^2_{min} accounts for tensions, leading to a ~14% error inflation
- Important role of **correlations**; their treatment in the data combination is crucial and can lead to significant differences between different combination methods (KNT vs. DHMZ)
- Differences in data and methods accounted for in WP merging procedure, leading to enlarged error for a^{HVP}. Procedure not well suited to cover CMD-3

a_{μ}^{HVP} : > 20 years of data based predictions, `pies'

 $\infty_{\mu}m_{\pi}$

2

1.4

0.9

Pie diagrams for KNT compilation:

- error still dominated by the two pion channel
- significant contribution to error from additional uncertainty from radiative corrections
- Is all this invalidated by the recent CMD-3 data?

0.6

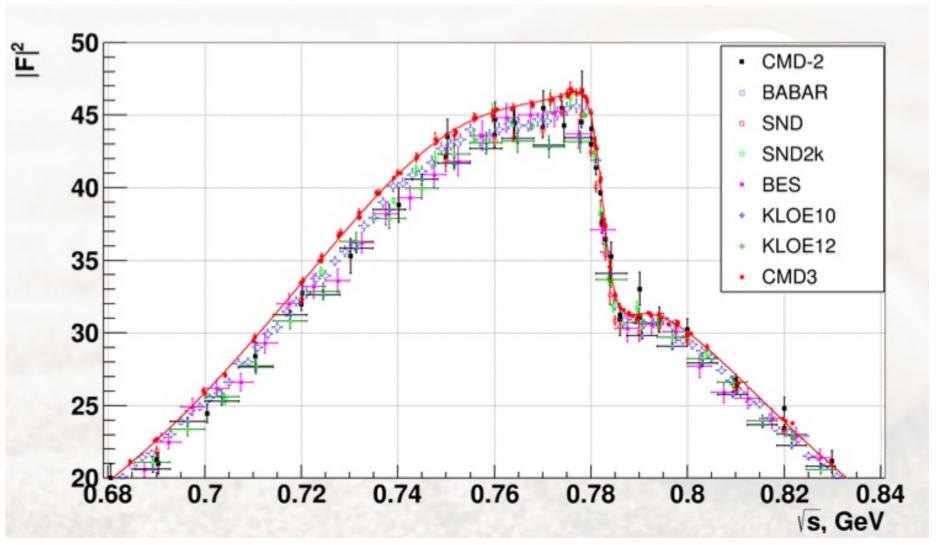
_*m*_π

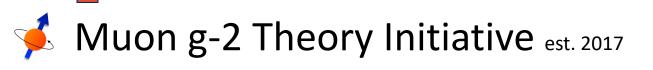
rad.

 ∞

2

1.4

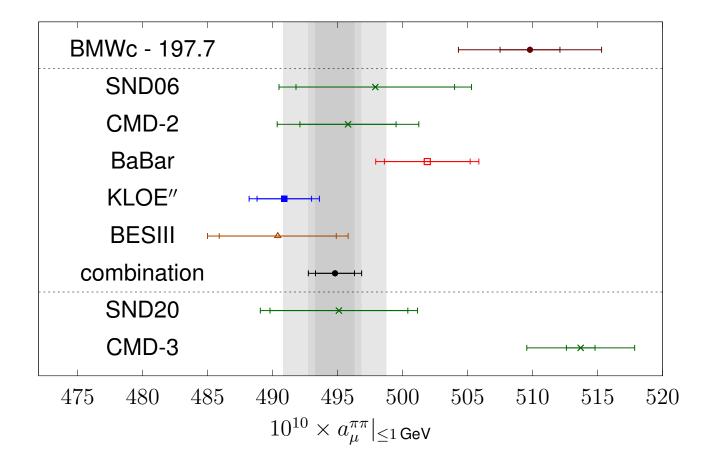

0.9


0.6

New CMD-3 $\pi^+\pi^-$ data vs. other experiments

Slide from Fedor Ignatov's TI talk 27.3.2023

arXiv:2302.08834


- "... map out strategies for obtaining the **best theoretical predictions for these hadronic corrections** in advance of the experimental result."
- Organised 9 int. workshops in 2017-2023
- White Paper posted 10 June 2020 (132 authors, from 82 institutions, in 21 countries)
 - **``The anomalous magnetic moment of the muon in the Standard Model''** [T. Aoyama et al., arXiv:2006.04822, *Phys. Rept.* 887 (2020) 1-166 >1000 cites]

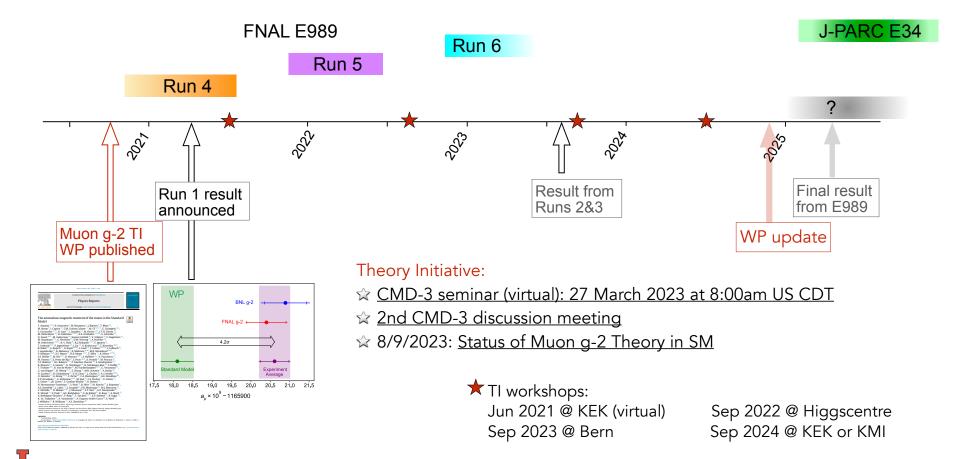
Peter Stoffer: studies of Colangelo et al. with analyticity&unitarity based fits: (no combination w. CMD-3 yet)

More tensions: CMD-3

 \rightarrow F. Ignatov et al. (CMD-3), 2302.08834 [hep-ex]

Peter Stoffer: studies of Colangelo et al. with analyticity&unitarity based fits:

Summary


- dispersive fits to CMD-3 work well, p-value of 20%
- new CMD-3 results disagree with other e^+e^- results at the 2 - 5 σ level
- further discrepancies in phase of ρ -- ω mixing parameter $\arg(\epsilon_{\omega})$
- high values for $\arg(\epsilon_{\omega})$ from all scan experiments not in line with narrow-width expectation
- SND20: only data set that does not lead to good fit

Michel Davier's summary report of the 49 Questions to CMD-3 (all answered by Fedor):

Conclusions

- Difficult exercise: sophisticated analyses are not easy to penetrate without access to the data
- However we got documented answers on detailed questions covering the important aspects of the analysis
- It is fair to say that no major issue significantly impacting the results has been identified
- The strength of the analysis lies in (1) the large statistics accumulated giving the possibility to perform systematic tests with high precision, (2) improved performance of the CMD-3 detector, and (3) the fact that two independent methods were used for channel separation
- Still several points remained unclear to us and /or not enough convincing with the information available
- Possible effects on the results from these minor issues need to be quantified with respect to the claimed accuracy
- Need guidance from CMD-2/3 on how to handle their data

Aida El-Khadra: TI outlook and plans:

Aida El-Khadra: TI outlook and plans:

WP update: proposed timeline

Goal

Obtain the best possible prediction for a_{μ} **before** the Fermilab g-2 experiment releases their final measurement (based on runs 4,5,6) in 2025.

Considerations

Writing a WP is a major undertaking, we should make sure it's worth the effort.

Timing of WP update informed by availability of new results & information

Summarize the status of SM predictions

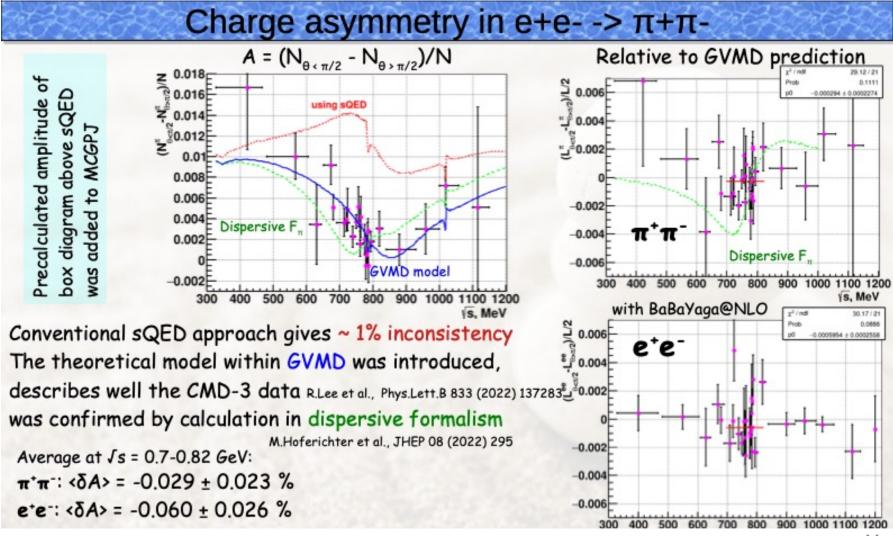
Include everything in update to enable detailed comparisons between the different approaches (e.g. lattice/dispersive) for HVP & HLbL and related quantities

Aim WP update for late 2024

Pathways to solving the (HVP) puzzles

- No easy way out! Signs for Beyond the Standard Model physics?
- BSM at high scales? Many explanations for `4.2σ' puzzle, few seem natural, NP smoking guns in the flavour sector weakened
- BSM `faking' low σ_{had} ? Possible but not probable

[DiLuzio, Masiero, Paradisi, Passera, Phys.Lett.B 829 (2022) 137037]


.. a new Z' [Coyle, Wagner, 2305.02354]

... or even new hadronic states (like sexa-quarks [Farrar, 2206.13460])?

- Situation now very complicated due to emerged lattice & CMD-3 puzzles
- More & more precise data are needed (and coming) to clarify data puzzle: BaBar, CMD-3, SND, BES III, Belle II, and KLOE
- To avoid any possible bias, **blinded analyses** are now the standard, for both experiments (g-2 and σ_{had}) and lattice, and also the next KNT+W compilation
- The third way: **MUonE**

Fedor Ignatov's talk on MC generators:

Need to study FF models

Fedor Ignatov's talk on MC generators:

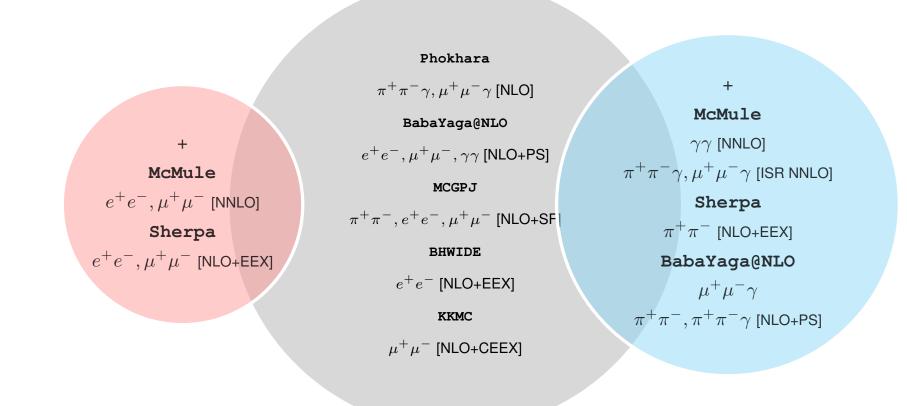
Need to study FF models

How it can affect pion form factor measurements?

Usually event selections in analyses are charge/angle symmetric

Main effect at lowest order comes from: Interference of box vs born diagrams

Interference of ISR & box vs FSR (or v.v.)

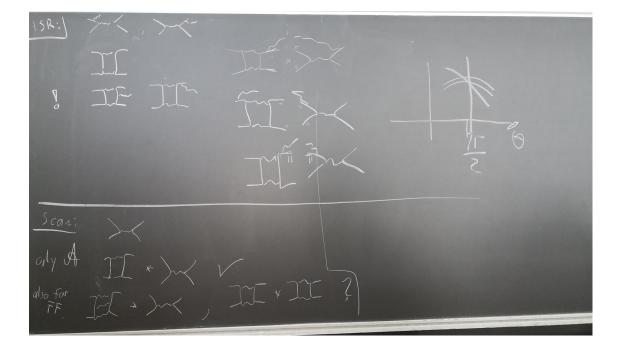

=> only charge-odd contribution effect is integrated out in full cross-section

=> charge-even can affect integrated cross-section

Strong2020 WorkStop Zurich, June 2023

Carlo Carloni Calame & Marek Schoenherr:

Workstop/Thinkstart outcome for WP4

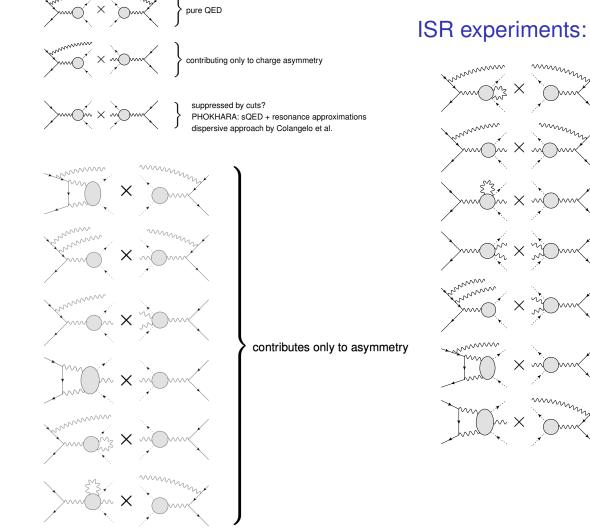


-- (C)EEX: (Coherent) Exclusive Exponentiation, based on YFS exponentiation, coherent is on amplitude level
-- Sherpa also working to include photon splitting in exponentiation, see Lois Flower's talk

KLOE 2 π , **RC** & **MC** activities have started

- Challenges and opportunities to get a clearer understanding of the puzzles from data, to re-establish a stable SM prediction of g-2 [and the running QED coupling, $\alpha(M_7^2)$]
- New Liverpool⁺ effort to analyse the full statistics KLOE 2π data (integrated L ~ 1.7 fb⁻¹) (details on the new KLOE ππγ analysis in Paolo's talk)
- Goal: sub-percent accuracy for $e^+e^- \rightarrow \pi^+\pi^-$, and improvement of a factor of ~2 on the total uncertainty => $\Delta a_{\mu}^{HO} \leq 0.4\%$
- This will require significant involvement from theoretical groups
 - improvement of MC(s) to better describe ISR and FSR (PHOKHARA, ...)
 - main aim is NNLO for ISR and improvement of/consistent FF treatment for FSR
 - So ther MC groups have agreed to also concentrate on e⁺e[−] → $\pi^+\pi^-$, $\mu^+\mu^-$, e⁺e[−] (Babayaga, Sherpa, McMule, KKMC)
 - ongoing activity: 5th WorkStop/ThinkStart: Radiative corrections and MC tools for Strong 2020

Extras/Discussion



Another loop on the board We don't need no speculation We do need H.O. control No dark sarcasm in the classroom Teacher, let them kids get on

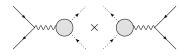
Zurich ThinkStart: diagram classification ISR (P. Stoffer's WP3 summary)

ISR experiments: LO

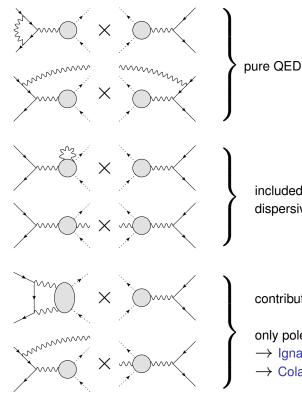
[From: 5th WorkStop/ThinkStart: Radiative corrections and MC tools for Strong 2020, Zurich, 5-9 June 2023]

ISR experiments: NLO (omitting pure QED corrections to LO)

PHOKHARA: sQED + resonance approximations dispersive approach by Colangelo et al.


contained in PHOKHARA pure FSR: sufficiently suppressed by experimental cuts?

???


PHOKHARA: sQED, multiplied by form factors *outside* loop ISR–FSR interference potential red flag identified during WorkStop

Zurich ThinkStart: diagram classification scan (P. Stoffer's WP3 summary)

Direct scan experiments: LO

Direct scan experiments: NLO

included in generators in terms of sQED dispersive approach by Colangelo et al.

contributes only to asymmetry;

only pole terms:

 \rightarrow Ignatov, Lee (2022)

→ Colangelo, Hoferichter, Monnard, Ruiz de Elvira (2022)

HVP dispersive: cross section compilation

How to get the most precise σ^{0}_{had} ? Use of $e^{+}e^{-} \rightarrow hadrons(+\gamma)$ data:

- Low energies: sum >35 exclusive channels, 2π, 3π, 4π, 5π, 6π, KK, KKπ, KKππ, ηπ, ..., [now very limited use iso-spin relations for missing channels]
- Above Vs ~1.8 GeV: use of inclusive data or pQCD (away from flavour thresholds), supplemented by narrow resonances (J/Ψ, Y)
- Challenge of data combination (locally in Vs, with error inflation if tensions):
 - many experiments, different energy ranges and bins,
 - statistical + systematic errors from many different sources, use of correlations
 - Significant differences between DHMZ and KNT in use of correlated errors:
 KNT allow non-local correlations to influence mean values,
 - DHMZ restrict this but retain correlations for errors, also estimate cross channel corrs.
- σ⁰_{had} means the `bare' cross section, i.e. <u>excluding</u> `running coupling' (VP) effects, but <u>including</u> Final State (γ) Radiation:
 - data need radiative corrections, compilations estimate additional uncertainty,

e.g. in KNT: $\delta a_{\mu}^{had, VP} = 2.1 \times 10^{-11}$, and $\delta a_{\mu}^{had, FSR} = 7.0 \times 10^{-11}$

HVP: White Hadronic vacuum polarization

Detailed comparisons by-channel and energy range between direct integration results:

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
[3.7,∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\rm DV+QCD}$	692.8(2.4)	1.2

+ evaluations using unitarity & analyticity constraints for $\pi\pi$ and $\pi\pi\pi$ channels [CHS 2018, HHKS 2019] 22

a^{HVP}: Hadronic tau decay data

- Historically, hadronic tau decay data, e.g. $\tau^- \to \pi^0 \pi^- \nu_{\tau}$, were used to improve precision of e⁺e⁻ based evaluations
- However, with the increased precision of the e⁺e⁻ data there is now limited merit in this (there are some conflicting evaluations, DHMZ have dropped it)
- The required iso-spin breaking corrections re-introduce a model-dependence and connected systematic uncertainty (there is, e.g., no $\rho-\omega$ mixing in τ decays)
- Quote from the WP, where this approach is discussed in detail:

"Concluding this part, it appears that, at the required precision to match the e^+e^- data, the present understanding of the IB corrections to τ data is unfortunately not yet at a level allowing their use for the HVP dispersion integrals. It remains a possibility, however, that the alternate lattice approach, discussed in Sec. 3.4.2, may provide a solution to this problem."

New contribution to the discussion by Masjuan, Miranda, Roig: arXiv:2305.20005
τ data-driven evaluation of Euclidean windows for the hadronic vacuum polarization'

a^{HVP}: Hadronic tau decay data

Mattia Bruno: Summary slide from TI talk on tau (Sep. 2023, Bern)

Windows very powerful quantities: intermediate window a^W_μ hadronic au-decays can shed light on tension lattice vs e^+e^-

 τ data very competitive on intermediate window historic tension w/ ee data and in IB τ effects preliminary analysis Aleph < 0.5% accuracy on a^W_μ (old) LQCD IB effects precision $O(1.5) \cdot 10^{-10}$ [MB Edinburgh '22] new EuroHPC allocation, blinding

Work in progress to finalize full formalism W-regularization and short-distance corrections (re-)calculation of initial state rad.cor. initial-final rad.cor: proof for analytic continuation numerical calculation of final state IB corrections relevant also for QED correction to HVP

Thanks for your attention

[MB et al, in prep]