The Hadronic Vacuum Polarization from the lattice

Davide Giusti

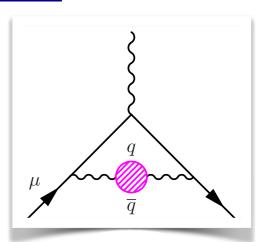
II Workshop on Muon Precision Physics

Liverpool

8th November 2023

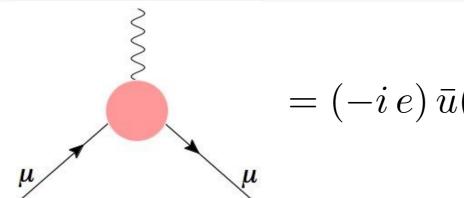
OUTLINE

- Introduction
- HVP from the lattice
- Window observables
- Further connections



Introduction

Muon magnetic anomaly



$$= (-ie) \,\bar{u}(p') \,\left[\gamma^{\mu} F_1(q^2) \,+\, \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \,\right] \,u(p)$$

muon anomalous magnetic moment: $a_{\mu} = \frac{g_{\mu} - 2}{2} = F_2(0)$

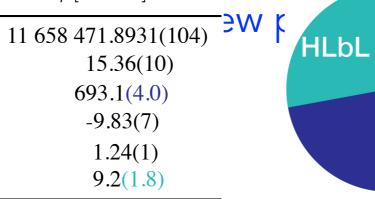
$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2(0)$$

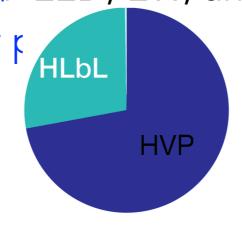
is generated by quantum loops; muon anomalous magnetic moment: $a_{\mu} = F_2(0)$ muon anomalous magnetic moment: $a_{\mu} = F_2(0)$ effects in the SM; \bullet is generated by quantum effects (loops). is a sensitive probe of new physics is a sensitive probe of new physics is a sensitive probe of new physics.

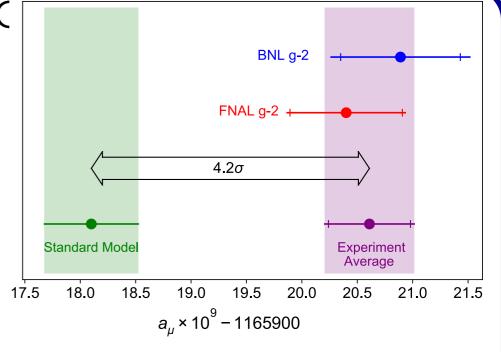
residential indicates the contributions to $a_{\mu}[\times 10^{10}]$

•	:		,
•	IS	5-loop QED	11 658
		2-loop EW	
		HVP LO	
		HVP NLO	
		HVP NNLO	

HLbL

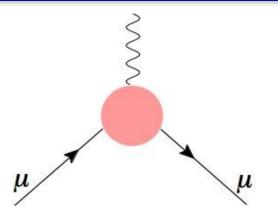






Theory error dominated by hadronic physics

Muon magnetic anomaly



$$= (-ie) \bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \right] u(p)$$

muon anomalous magnetic moment:

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2(0)$$

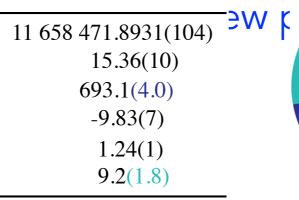
• is generated by quantum loops; muon anomalous magnetic moment:

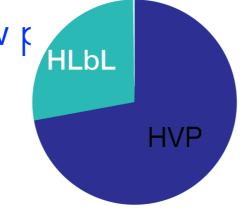
muon anomalous magnetic moment: $a_{\mu} = F_2(0)$ muon reno investo contribution for the series of t

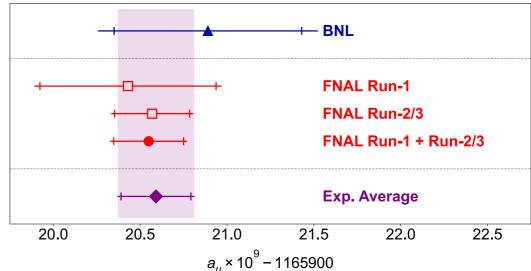
resides exiting ibnotions to $a_{\mu}[\times 10^{10}]$ from 0.000 EW, and QCD effects in the SM.

A		
→ 15	5-loop QED	
	2-loop EW	
	HVP LO	
	HVP NLO	
	HVP NNLO	

HLbL







Theory error dominated by hadronic physics

Precision goal for Fermilab ×4 better implies knowing HVP at 0.2-0.3% accuracy

Muon g-2 2023

Hadronic contributions

$$a_{\mu}^{ ext{exp}} - a_{\mu}^{ ext{QED}} - a_{\mu}^{ ext{EW}} = 718.9(4.1) imes 10^{-10} \stackrel{?}{=} a_{\mu}^{ ext{had}}$$

Clearly right order of magnitude:

$$a_{\mu}^{\text{had}} = O\left(\left(\frac{\alpha}{\pi}\right)^2 \left(\frac{m_{\mu}}{M_{\rho}}\right)^2\right) = O\left(10^{-7}\right)$$

(already Gourdin & de Rafael '69 found $a_{\mu}^{\mathsf{had}} = 650(50) imes 10^{-10}$)

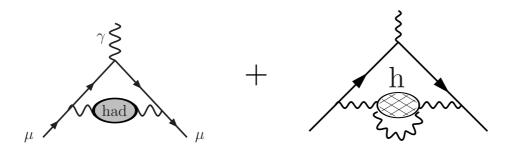
Huge challenge: theory of strong interaction between quarks and gluons, QCD, hugely nonlinear at energies relevant for a_{μ}

- → perturbative methods used for electromagnetic and weak interactions do not work
- → need nonperturbative approaches

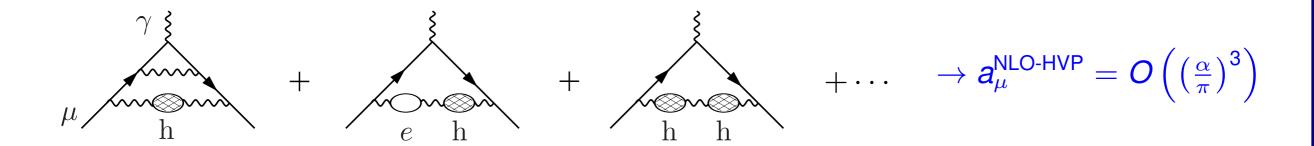
Write

$$a_{\mu}^{\mathsf{had}} = a_{\mu}^{\mathsf{LO-HVP}} + a_{\mu}^{\mathsf{HO-HVP}} + a_{\mu}^{\mathsf{HLbyL}} + O\left(\left(rac{lpha}{\pi}
ight)^4
ight)$$

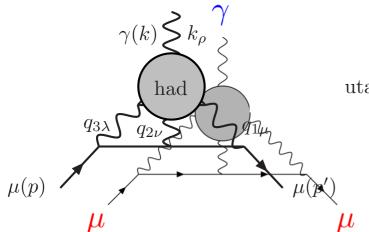
Hadronic contributions: diagrams



$$ightarrow extbf{ extit{a}}_{\mu}^{ ext{LO-HVP}} = O\left(\left(rac{lpha}{\pi}
ight)^2
ight)$$



dronic vacuum polarisalina de Bonic light-by-light



• HLbL much more complicated than HVP, but ultimate precision needed is $\simeq 10\%$ instead of $\simeq 0.2\%$

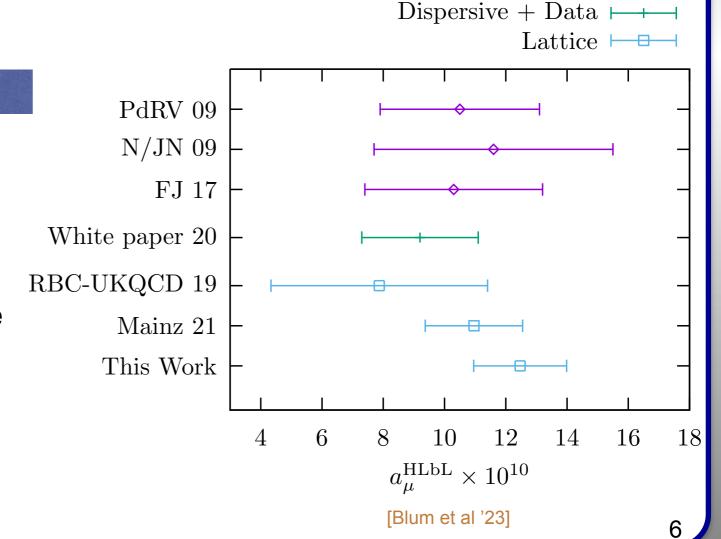
utations of the q_i

• For many years, only accessible to models of QCD w/difficult to estimate systematics (Prades et al '09): $a_{\mu}^{\rm HLbL} = 10.5(2.6) \times 10^{-10}$

- Also, lattice QCD calculations were exploratory and incomplete
 - Tremendous progress in past 5 years:
 - → Phenomenology: rigorous data

Procura, Stoffer,...'15-'20]

- Lattice: first two solid lattice calculations
- All agree w/ older model results but error estimate much more solid and will improve
- Agreed upon average w/ NLO HLbL and conservative error estimates [WP '20]
- $a_{\mu}^{\text{exp}} a_{\mu}^{\text{QED}} a_{\mu}^{\text{EW}} a_{\mu}^{\text{HLbL}} = 709.7(4.5) \times 10^{-10} \stackrel{?}{=} a_{\mu}^{\text{HVP}}$



12

Hadron Models +

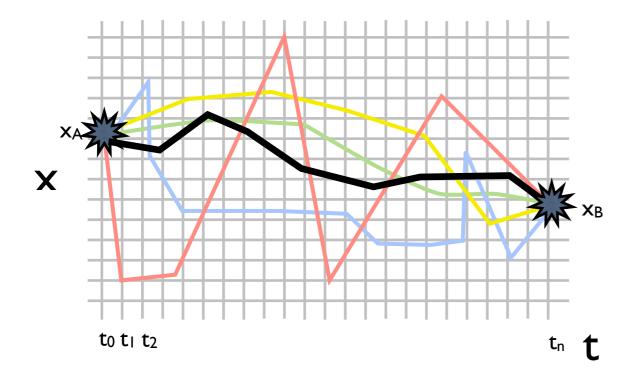
ENLATINAMO del prediction vo ment $a_{\mu}^{ ext{HVP}}$ $+a_{\mu}^{\mathrm{HLbL}}$ $\left[a_{\mu}^{\rm QED} + a_{\mu}^{\rm Weak} + a_{\mu}^{\rm HLbL}\right]$ HVP from: rom: BMW2 20 ETM18 Mainz 3/19 FHM19 manuz/CLS19 PACS FHM19 **RBC/U** PACS19 BMW₁ RBC/UKQCD18 hybrich coi RBC/L BMW97X RBCnokused in WP20 <u>attice</u> certainty goal data/lattice Fermilab J17 BDJ19 not used in WP20 not used in WP20 [T. Aoyama et al, arXiv:2006.04822] Phys. Rept 887 (2020) data drive J17 + unitarity vticity DHMZ19 ΚN WF _ıconstraint: KINITHO WP20 -20 -10 20 ₋₆30 20[T. Aoyama et a , <u>a</u> -40 10 x 10¹⁰ exp exp Phys. Repts. 887 (2 -30 -20 -10 30 -60 -50 -40 0 10 20 SM exp) v 10¹⁰

Small interlude: Lattice QCD

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Discretise QCD onto 4D space-time lattice
- QCD equations
 — integrals over the values of quark and gluon fields on each site/link (QCD path integral)
- ~ I 0¹² variables (for state-of-the-art)

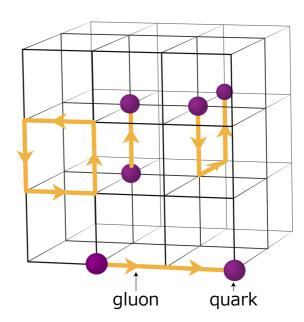


- Evaluate by importance sampling
- Paths near classical action dominate
- Calculate physics on a set (ensemble) of samples of the quark and gluon fields

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Euclidean space-time $t \rightarrow i \tau$
- \circ Finite lattice spacing α
- Volume $L^3 \times T = 64^3 \times 128$
- Boundary conditions

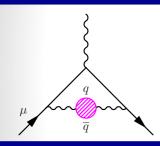


Approximate the QCD path integral by Monte Carlo

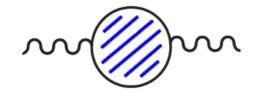
$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \mathcal{D}\overline{\psi} \mathcal{D}\psi \mathcal{O}[A, \overline{\psi}\psi] e^{-S[A, \overline{\psi}\psi]} \longrightarrow \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}([U^{i}])$$

with field configurations U^i distributed according to $e^{-S[U]}$

HVP from the lattice



HVP from LQCD



$$\Pi_{\mu\nu}(Q) = \int d^4x \ e^{iQ\cdot x} \left\langle J_{\mu}(x)J_{\nu}(0)\right\rangle = \left[\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu}\right] \Pi\left(Q^2\right)$$

$$a_{\mu}^{\text{HVP,LO}} = 4\alpha_{em}^2 \int_{0}^{\infty} dQ^2 \frac{1}{m_{\mu}^2} f\left(\frac{Q^2}{m_{\mu}^2}\right) \left[\Pi(Q^2) - \Pi(0)\right]$$

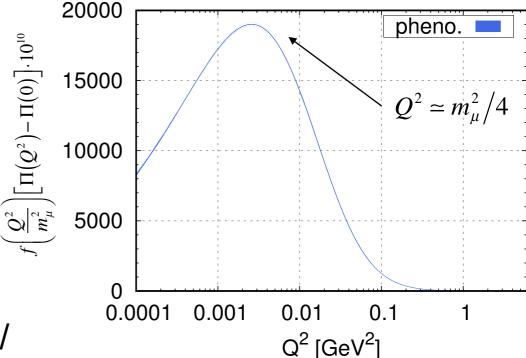
B. E. Lautrup et al., 1972

FV & $a \neq 0$: A. discrete momenta

 $(Q_{\min} = 2\pi/T > m_{\mu}/2)$; B. $\Pi_{\mu\nu}(0) \neq 0$ in FV

contaminates $\Pi(Q^2) \sim \Pi_{\mu\nu}(Q)/Q^2$ for $Q^2 \to 0$ w/

very large FV effects; $C.\Pi(0) \sim \ln(a)$



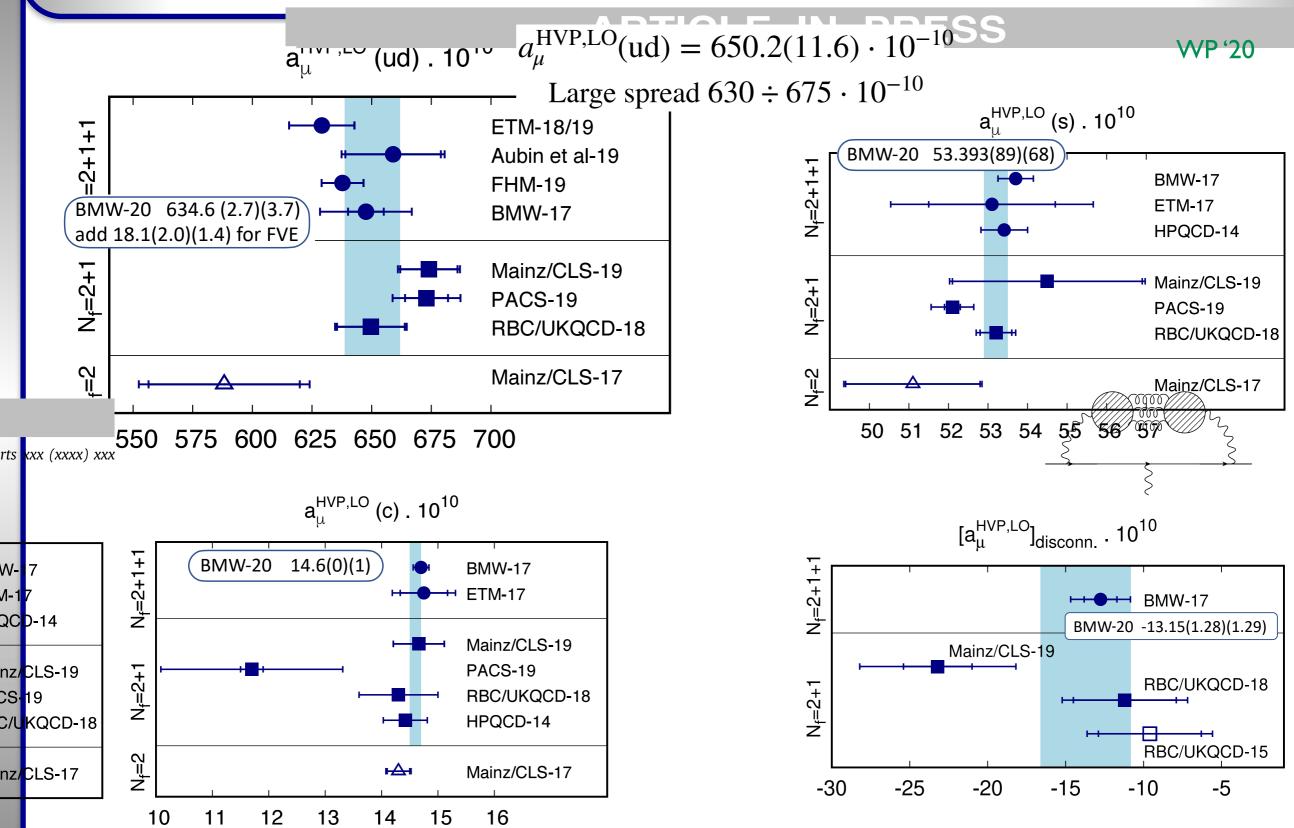
F. Jegerlehner, "alphaQEDc17"

Time-Momentum Representation

$$a_{\mu}^{\text{HVP,LO}} = 4\alpha_{em}^2 \int_{0}^{\infty} dt \ \widetilde{f}(t) \ V(t)$$

$$V(t) = \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \left\langle J_i(\vec{x},t) J_i(0) \right\rangle$$

D. Bernecker and H. B. Meyer, 2011



part of t the seco

14 18 [11] and RB0

55

N_f=2+1+1

 $N_f = 2 + 1$

 $N_f=2$

Fig. 45. ((Upper-Ri

disconnec

the under (squares)

indicate r been upd

Source: A

for a HVF

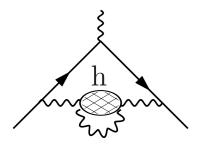
rest. Th

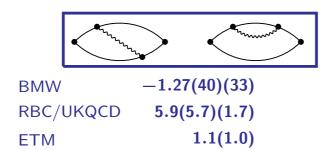
Euclidea calculat

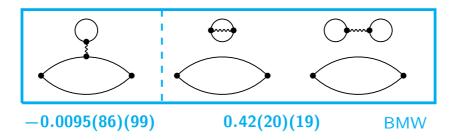
As ex

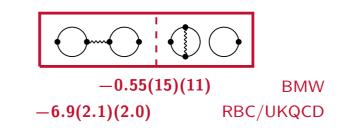
therefor

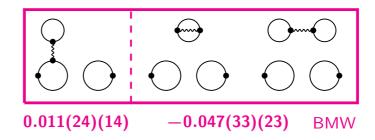
Isospin-breaking contributions

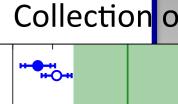


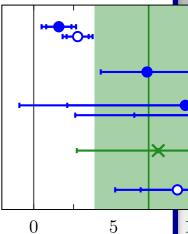


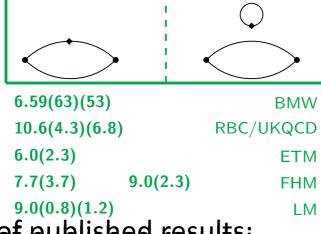


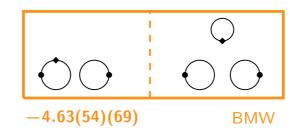






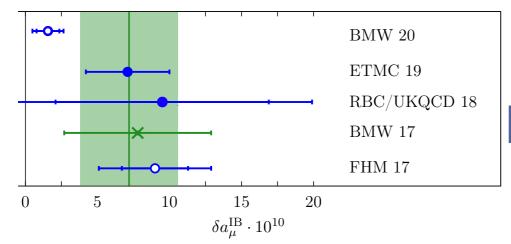






BMW [arXiv:2002.12347] RBC/UKQCD [Phys.Rev.Lett. 121 (2018) 2, 022003] ETM [Phys. Rev. D 99, 114502 (2019)] FHM [Phys.Rev.Lett. 120 (2018) 15, 152001] LM [Phys.Rev.D 101 (2020) 074515]

Collection of published results:



- Small overall value due to large cancellations
- Large statistical uncertainties
- More precise calculations are in progress

Window observables

Windows "on the g-2 mystery"

Restrict integration over Euclidean time to sub-intervals

reduce/enhance sensitivity to systematic effects

$$\left(a_{\mu}^{\text{HVP,LO}} = a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD}\right)$$

$$a_{\mu}^{SD}(f;t_{0},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \left[1 - \Theta\left(t,t_{0},\Delta\right) \right]$$

$$a_{\mu}^{W}(f;t_{0},t_{1},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \Big[\Theta\left(t,t_{0},\Delta\right) - \Theta\left(t,t_{1},\Delta\right) \Big] \Big|$$

$$a_{\mu}^{LD}(f;t_{1},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \, \Theta\left(t,t_{1},\Delta\right)$$

$$\Theta(t, t', \Delta) = \frac{1}{1 + e^{-2(t-t')/\Delta}}$$

"Standard" choice:

$$t_0 = 0.4 \text{ fm}$$
 $t_1 = 1.0 \text{ fm}$

$$\Delta = 0.15 \text{ fm}$$

RBC/UKQCD 2018

Intermediate window

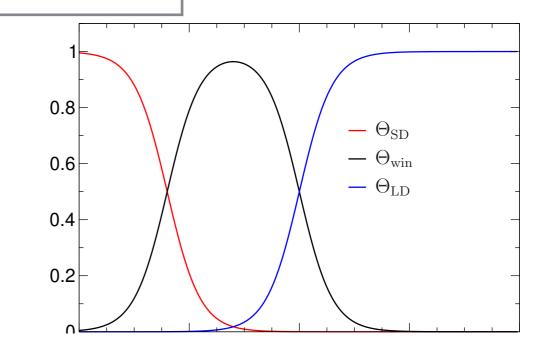
ReducedFyEs

Much better St. ratio

Precision test of different lattice calculations Mainz/CLS 20 (prelim.)

 $(t_0, t_1, \Delta) = (0.4, 1.0, 0.15)$ fm

Commensurate uncertainties compared to dispersive evaluations



Comparison w

$$V(t) = \frac{1}{12\pi^2} \int_{M_{\pi^0}}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s}t}$$

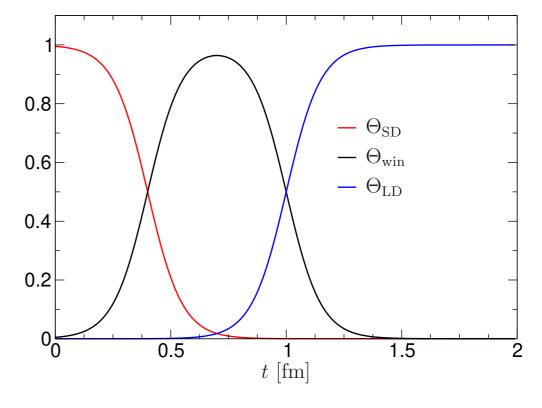
$$G(t) = \frac{1}{12\pi^2} \int_{m^2}^{\infty} d(\sqrt{s}) I$$

Insert V(t) into the expression for TMR

Insert G(t) into expression for time-mom-

$$a_{\mu,win}^{\text{HVP,LO}} = 4\alpha_{em}^{2}$$

$$a_{\mu}^{\text{hvp,ID}} = \begin{pmatrix} a_{em}^{2} \\ - \end{pmatrix} W \int_{m_{-0}^{2}}^{\infty} d(\sqrt{s}) R(s) \frac{1}{12\pi^{2}}$$



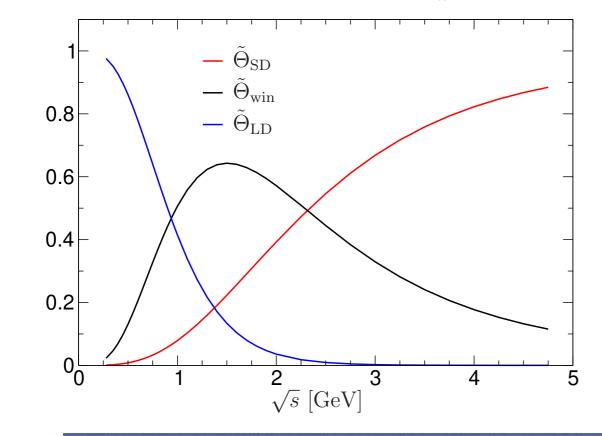
0.8

0.6

0.4

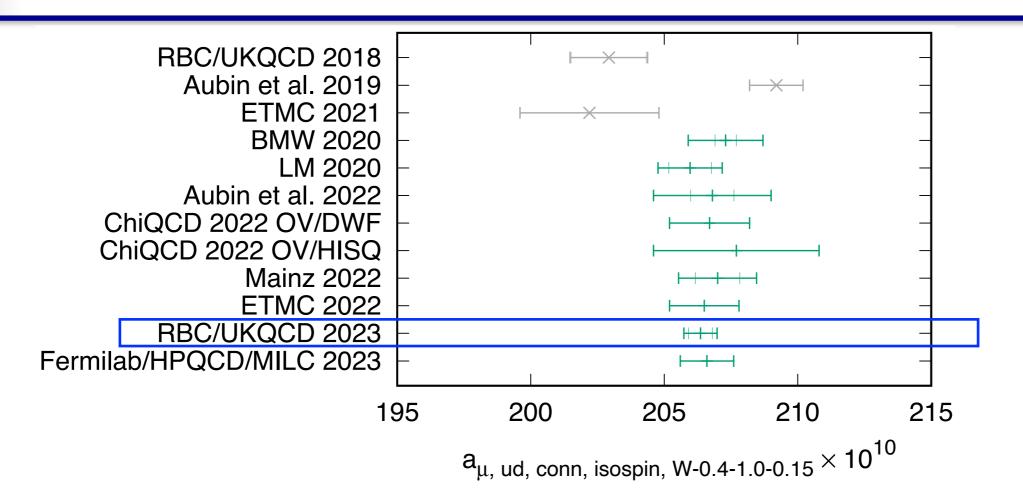
0.2

Colangelo et al. 2022



Intermediate window from R-ratio follow All channels edure 168.4(5) 229.4(1.4) 395.1(2.4) 411 channels edure 168.4(5) W.P. estimate: [100%] 2π below $1.0 \,\text{GeV}$ hvp, ID.8%1 138.3(1.2) 342.3(2.3) 494.3(3.6) $\frac{2.8\%}{2.5(1)} a_{\mu_{1}8.5(4)}^{\nu_{1}28n_{1}0\%}$ 3π below 1.8 GeV [5.5%] [39.9%] [54.6%] [100%] White Paper [1] 693.1(4.0) RBC/UKQCD [24] 715.4(18.7) 231.9(1.5) BMWc [36] 236.7(1.4) 707.5(5.5) BMWc/KNT [7, 36] 229.7(1.3) Mainz/CLS [99] 237.30(1.46) [Colom Melooet al., a69X3X22209512963]

Results for the intermediate window



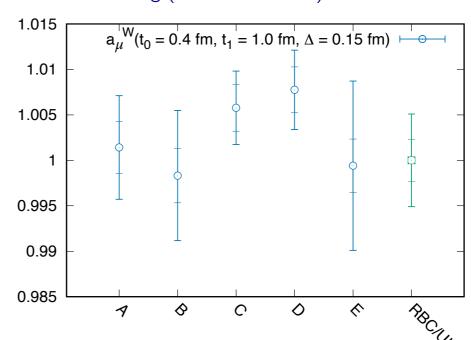
Blinding

- ▶ 2 analysis groups for ensemble parameters (not blinded)
- ▶ 5 analysis groups for vector-vector correlators (blinded, to avoid bias towards other lattice/R-ratio results)
- ▶ Blinded vector correlator $C_b(t)$ relates to true correlator $C_0(t)$ by

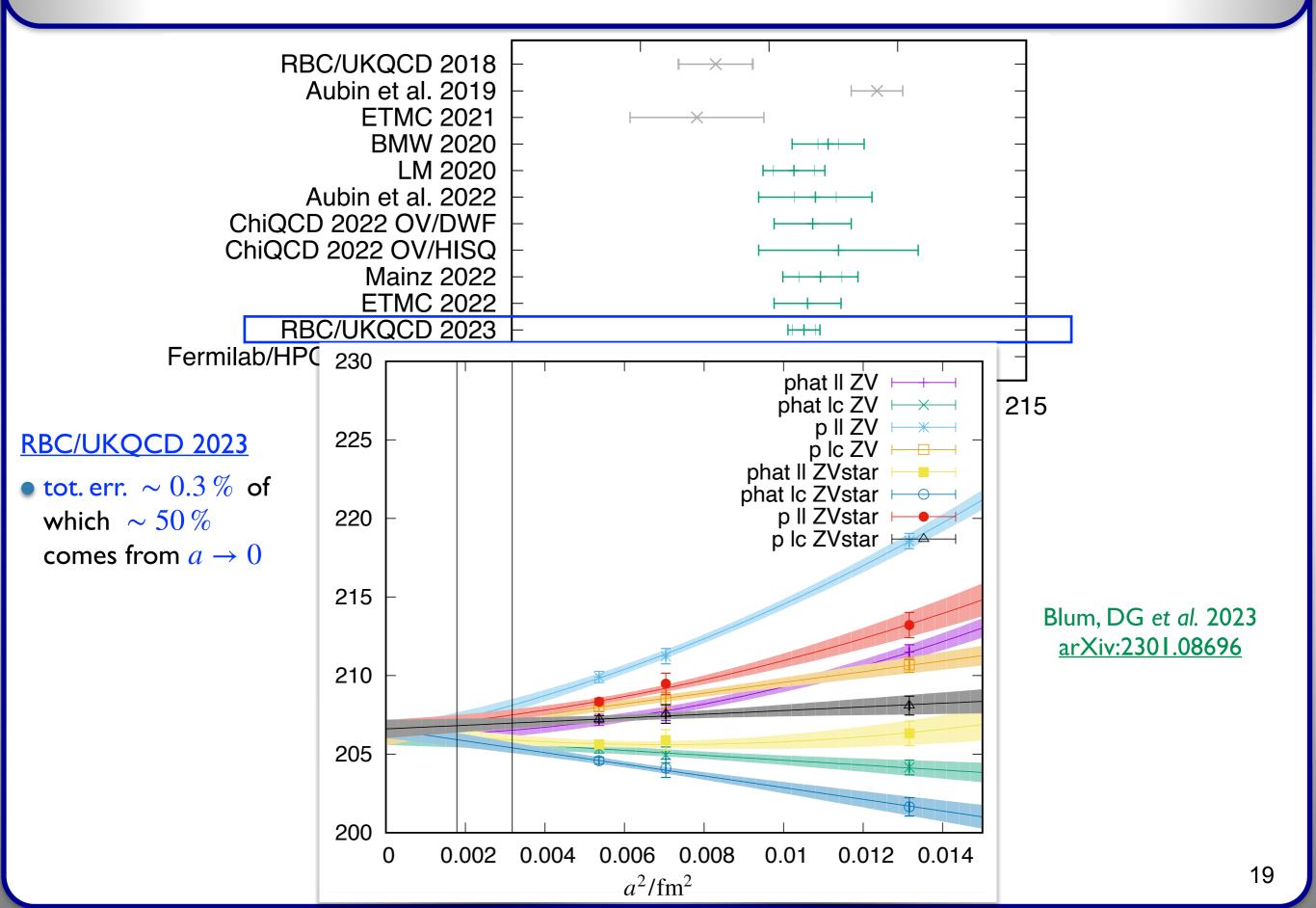
$$C_b(t) = (b_0 + b_1 a^2 + b_2 a^4) C_0(t)$$
 (1)

with appropriate random b_0 , b_1 , b_2 , different for each analysis group. This prevents complete unblinding based on previously shared data on coarser ensembles.

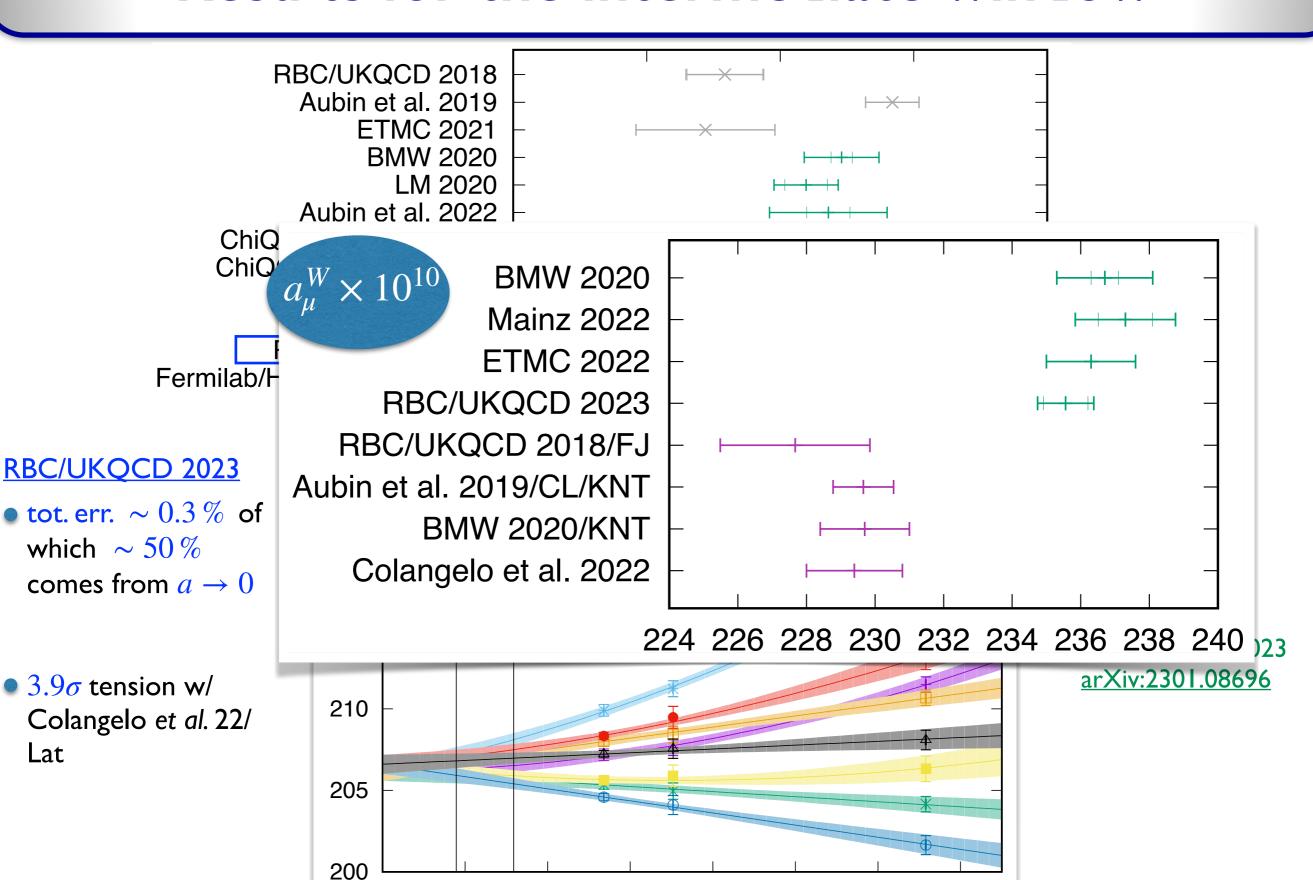
Relative unblinding (standard window)



Results for the intermediate window



Results for the intermediate window



0.002

0.004

0.006 0.008

 a^2/fm^2

0.01

0.012 0.014

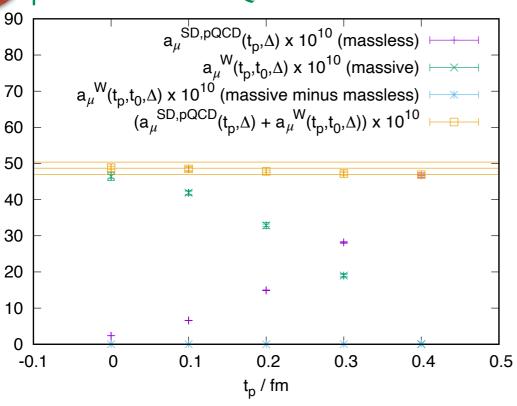
19

Lat

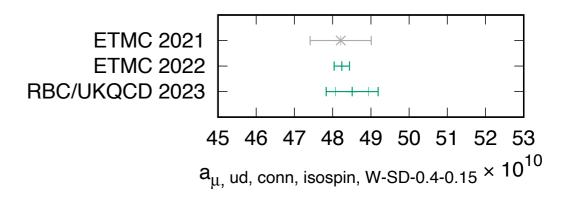
Other windows

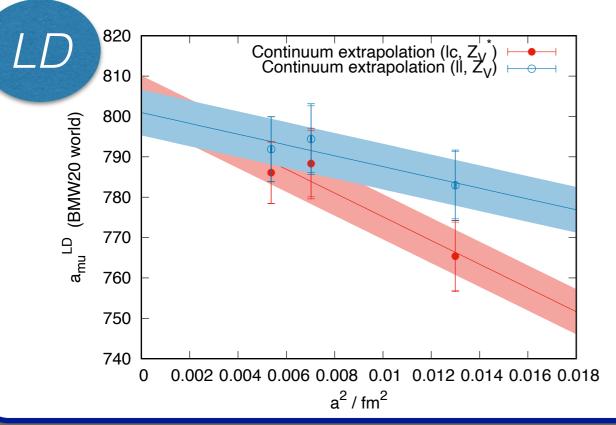
SD

plot from RBC/UKQCD '23



- dominated by perturbation theory
- large cutoff effects
- more results expected soon





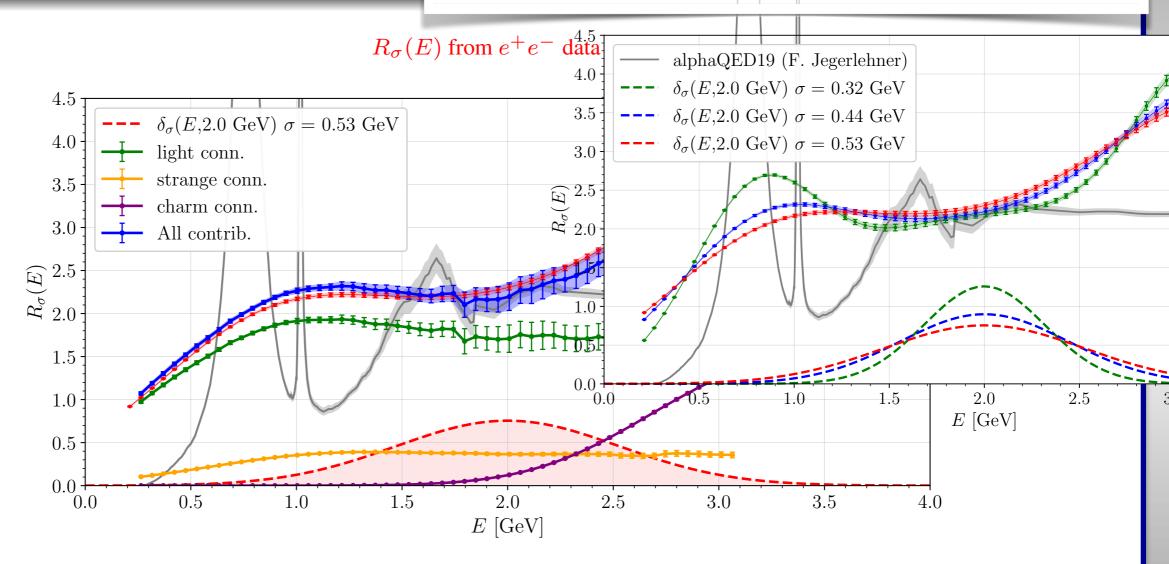
RBC/UKQCD - Group A, blind, preliminary

- 5 groups, analysis in progress
- vector current is blinded allowing for a factor of 4 variation of V(t)
- large FV effects + StN problem
- sub-percent accuracy goal achieved

Probing the R-ratio on the lattice

 $R_{\sigma}(E)$: preliminary results

$$R_{\sigma}(E) = \int_{2M_{\pi}}^{\infty} d\omega \delta_{\sigma}(\omega, E) R(\omega) \qquad \delta_{\sigma}(\omega, E) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(\omega - E)^2}{2\sigma^2}}$$



- Uncertainty coming mostly from light quark contributions, strange & charm ones are very precise
- Disconnected contributions are tiny and cannot be appreciated on this scale

Alessandro De Santis

Probing the ${\cal R}$ ratio on the lattice

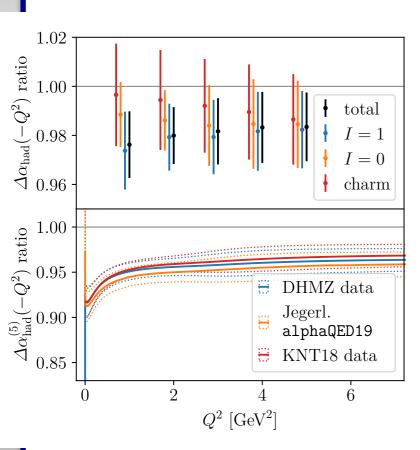
13/16

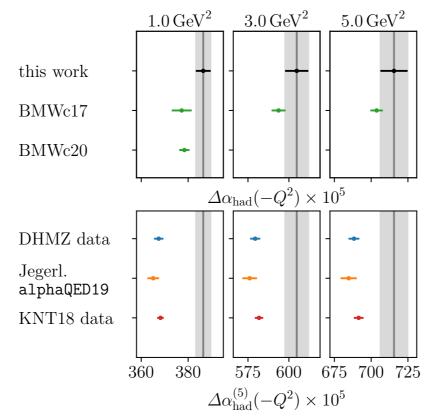
Hadronic running of α_{em} from the lattice

Lattice result for the hadronic running of α

[Cè et al., arXiv:2203.08676]

Starting point: Results for $\Delta \alpha_{\rm had}(-Q^2)$ for Euclidean momenta $0 \le Q^2 \le 7 \, {\rm GeV^2}$ [T. San José, TUE 17:10]





- Mainz/CLS and BMWc (2017) differ by 2-3% at the level of $1-2\sigma$
- Tension between Mainz/CLS and phenomenology by $\sim 3\sigma$ for $Q^2 \gtrsim 3 \, {\rm GeV}^2$
- Tension increases to $\gtrsim 5\sigma$ for $Q^2 \lesssim 2\,{\rm GeV^2}$ (smaller statistical error due to ansatz for continuum extrapolation)

Systematic uncertainties from fit ansatz, scale setting, charm quenching, isospin-breaking and missing bottom quark contribution (five flavour theory) included in error budget

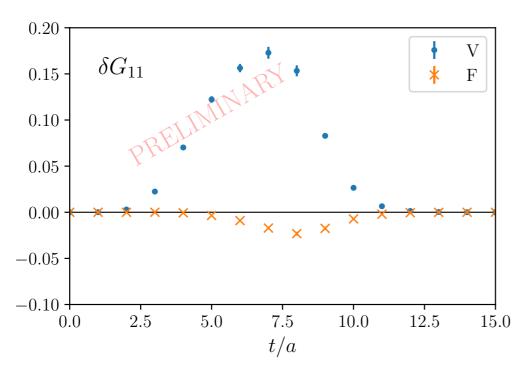
Hartmut Wittig 2

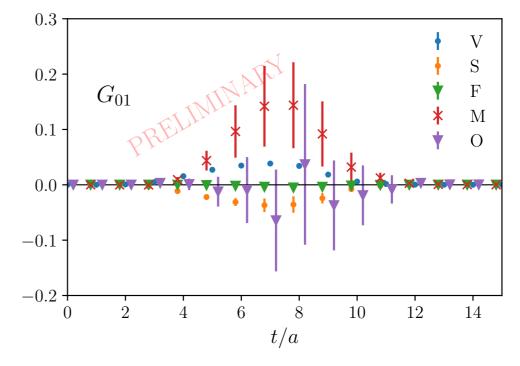
Isospin-breaking corrections in τ -decays

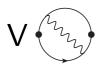
talk by M. Bruno @ Muon g-2 TI 2022

Results - Preliminary

Preliminary from 48l ensemble phys. pions, $a^{-1} \simeq 1.73~{\rm GeV}$, 17 configs cross-checks of code, data, analysis still missing







S

 $M \bigodot$

O €

03 ()

B I C O C C A

Summary and Outlook

- Tremendous progress in lattice calculations of HVP (and HLbL!) contributions
- Sub-percent calculation by BMW must be checked and impressive efforts from various lattice collaborations are in progress
- An update of the White Paper is aimed for late 2024
- Benchmark quantities (windows) crucial for checking the internal consistency of lattice calculations. For a_{μ}^{W} a new puzzle arises: remarkable agreement between lattice calculations but significant tension with dispersive prediction
- Extend calculation of window quantities to individual flavor and quarkdisconnected contributions. Reach better precision for isospin-breaking contr.
- Extend comparison with phenomenological analyses to understand discrepancies. Clarify tensions in $\pi^+\pi^-$ BaBar, KLOE, CMD3

