

LEVERHULME TRUST _____

Extraction of $\Delta \alpha_{had}$ and calculation of a_{μ}^{HLO} in MUonE

Riccardo Nunzio Pilato University of Liverpool

r.pilato@liverpool.ac.uk

2nd Workshop on Muon Precision Physics November 8th 2023

- Extraction of Δα_{had}: the template fit procedure + strategy for the systematics
- a_{μ}^{HLO} : integral in the space-like region.
- An alternative way to compute a_{μ}^{HLO} with MUonE data.

The MUonE experiment

The MUonE experiment

Extraction of $\Delta \alpha_{had}(t)$ from the shape of the $\mu e \rightarrow \mu e$ differential cross section

4

$\Delta \alpha_{had}$ parameterization

Inspired from the 1 loop QED contribution of lepton pairs and top quark at t < 0

$$\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3}\frac{M}{t} + \left(\frac{4}{3}\frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6}\right)\frac{2}{\sqrt{1 - \frac{4M}{t}}} \ln \left|\frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}}\right| \right\}$$
 2 parameters: K, M

Allows to calculate the full value of $a_{\mu}^{\ \mathrm{HLO}}$

Dominant behaviour in the MUonE kinematic region:

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$

Template fit procedure

1. Grid of points (K, M) in the parameters space: cover a region $\pm 5\sigma$ around the expected values (σ = expected uncertainty).

2. Ensemble of template distributions: each template is a different pair (K, M).

Generate a unique distribution, then build the different templates by reweighting the events for any given pair (K, M).

Template fit procedure

4. Perform a parabolic interpolation across the grid points to get the best fit parameters (K, M).

$$\chi^{2} = \sum_{i}^{\text{bins}} \left(\frac{\text{data}_{i} - \text{templ}(K, M)_{i}}{\sigma_{i}^{\text{data}}} \right)^{2}$$

Compute a_{μ}^{HLO}

N A

11

$$a_{\mu}^{HLO} = \frac{\alpha_0}{\pi} \int_{0}^{1} dx (1-x) \underline{\Delta \alpha_{had}[t(x)]}$$

Results from a simulation with the expected final statistics (4×10¹² elastic events):

 $a_{\mu}^{\rm HLO}$ = (688.8 ± 2.4) × 10⁻¹⁰ (0.35% accuracy)

> Input value $a_{\mu}^{\rm HLO}$ = 688.6 × 10⁻¹⁰

The need of including systematic effects in the analysis

Some systematic effects can produce huge distortions in the shape of the elastic scattering cross section.

Example: ±10% error on the angular intrinsic resolution.

9

The need of including systematic effects in the analysis

What if systematic effects are not included in the template fit?

Simplified situation:

- 1 fit parameter (K). $\Delta \alpha_{had}(t) \simeq -\frac{1}{15}Kt$
- L = 5 pb⁻¹.
 ~10⁹ elastic events (~4000 times less than the final statistics)
- Shift in the pseudo-data sample: $\sigma_{Intr} \rightarrow \sigma_{Intr} + 5\%$.

Main systematics have large effects in the normalization region. (no sensitivity to $\Delta \alpha_{had}$ here)

Promising strategy:

- Study the main systematics in the normalization region.
- Include residual systematics as nuisance parameters in a combined fit with signal.

Systematic error on the angular intrinsic resolution

12

±10% error on the angular intrinsic resolution.

Systematic error on the multiple scattering

Expected precision on the multiple scattering model: ± 1%

G. Abbiendi et al JINST (2020) 15 P01017

Combined fit signal + systematics

- Include residual systematics as nuisance parameters in the fit.
- Simultaneous likelihood fit to K and systematics using the Combine tool.

- K_{ref} = 0.137
- shift MS: +0.5%
- shift intr. res: +5%
- shift E_{beam}: +6 MeV

Selection cuts	Fit results
$\begin{array}{l} \theta_e \leq 32 \mathrm{mrad} \\ \theta_\mu \geq 0.2 \mathrm{mrad} \end{array}$	$K = 0.133 \pm 0.028$
	$\mu_{\rm MS} = (0.47 \pm 0.03)\%$
	$\mu_{\rm Intr} = (5.02 \pm 0.02)\%$
	$\mu_{\rm E_{\rm Beam}} = (6.5 \pm 0.5) {\rm MeV}$
	$\nu = -0.001 \pm 0.003$

Similar results also for different selection cuts.

Next steps:

- Test the procedure for the MuonE design statistics.
- Improve the modelization of systematic effects.

arXiv:2309.14205 [hep-ph]

submitted to PLB

An alternative evaluation of the leading-order hadronic contribution to the muon g-2 with MUonE

Fedor Ignatov^a, Riccardo Nunzio Pilato^a, Thomas Teubner^a, Graziano Venanzoni^{a,b}

^aUniversity of Liverpool, Foundation Building, Brownlow Hill, L69 3BX, Liverpool, United Kingdom ^bINFN Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy

An alternative method to compute a_{μ}^{HLO} with MUonE

$$a_{\mu}^{\text{HLO}} = \frac{\alpha^2}{3\pi^2} \int_{s_{\text{th}}}^{\infty} \frac{ds}{s} K(s) R(s) \qquad s_{\text{th}} = m_{\pi^0}^2$$

An alternative method to compute a_{μ}^{HLO} with MUonE

$$a_{\mu}^{\text{HLO}} = \frac{\alpha^2}{3\pi^2} \int_{s_{\text{th}}}^{\infty} \frac{ds}{s} K(s) R(s) \qquad s_{\text{th}} = m_{\pi^0}^2$$
$$\downarrow \qquad s_0 \gtrsim (2 \,\text{GeV})^2$$
$$\frac{\alpha^2}{3\pi^2} \int_{s_{\text{th}}}^{s_0} \frac{ds}{s} K(s) R(s) \qquad + \qquad \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} K(s) R(s) \qquad \text{pQCD}$$

$$-\mathrm{Im}\Pi_{had}(s) = \frac{\alpha}{3}R(s)$$

$$\int_{s_{\rm th}}^{s_0} \frac{ds}{s} K(s) \frac{{\rm Im}\Pi_{had}(s)}{\pi} =$$

S. Bodenstein et al, Phys. Rev. D 85 (2012) C.A. Dominguez et al, Phys. Rev. D 96 (2017)

$$\int_{s_{\rm th}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] \frac{{\rm Im}\Pi_{had}(s)}{\pi} + \int_{s_{\rm th}}^{s_0} \frac{ds}{s} K_1(s) \frac{{\rm Im}\Pi_{had}(s)}{\pi}$$

$$\int_{s_{\text{th}}}^{s_0} \frac{ds}{s} K(s) \frac{\text{Im}\Pi_{had}(s)}{\pi} = S. \text{ Bodenstein et al, Phys. Rev. D 85 (2012)} C.A. \text{ Dominguez et al, Phys. Rev. D 96 (2017)} \\ \int_{s_{\text{th}}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] \frac{\text{Im}\Pi_{had}(s)}{\pi} + \int_{s_{\text{th}}}^{s_0} \frac{ds}{s} K_1(s) \frac{\text{Im}\Pi_{had}(s)}{\pi}$$

$$K_1(s) = a_0 s + \sum_{n=1}^3 \frac{a_n}{s^n}$$

 $K_1(s)$ approximates K(s) for $s < s_0$. Meromorphic function: no cuts, poles in s = 0.

Two different techniques to get $K_1(s)$: 1) Least squares minimization 2) Minimize $\int_{s_{th}}^{s_0} \frac{ds}{s} |K(s) - K_1(s)| R(s)$

High energy integral

Similar strategy for the high energy part

$$\begin{split} \int_{s_0}^{\infty} \frac{ds}{s} K(s) \frac{\mathrm{Im}\Pi_{had}(s)}{\pi} &= \\ \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] \frac{\mathrm{Im}\Pi_{had}(s)}{\pi} + \int_{s_0}^{\infty} \frac{ds}{s} \tilde{K}_1(s) \frac{\mathrm{Im}\Pi_{had}(s)}{\pi} \\ \tilde{K}_1(s) &= K_1(s) - c_0 s \end{split}$$

Compute a_{μ}^{HLO}

Rearranging the previous equations...

$$\begin{aligned} a_{\mu}^{\text{HLO}} &= a_{\mu}^{\text{HLO}(\text{II})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{IV})} \\ a_{\mu}^{\text{HLO}(\text{I})} &= -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_{n} d^{(n)}}{n! dt^{n}} \Delta \alpha_{had}(t) \Big|_{t=0} \\ a_{\mu}^{\text{HLO}(\text{II})} &= \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_{0}} \frac{ds}{s} c_{0} s \Pi_{had}(s) \Big|_{p\text{QCD}} \\ a_{\mu}^{\text{HLO}(\text{III})} &= \frac{\alpha^{2}}{3\pi^{2}} \int_{s_{\text{th}}}^{s_{0}} \frac{ds}{s} [K(s) - K_{1}(s)] R(s) \\ a_{\mu}^{\text{HLO}(\text{IV})} &= \frac{\alpha^{2}}{3\pi^{2}} \int_{s_{0}}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_{1}(s)] R(s) \end{aligned}$$

Compute a_{μ}^{HLO}

Rearranging the previous equations...

$$\begin{aligned} a_{\mu}^{\text{HLO}} &= a_{\mu}^{\text{HLO}(\text{II})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{IV})} \\ a_{\mu}^{\text{HLO}(\text{I})} &= -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_{n}}{n!} \frac{d^{(n)}}{dt^{n}} \Delta \alpha_{had}(t) \Big|_{t=0} \\ a_{\mu}^{\text{HLO}(\text{II})} &= \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_{0}} \frac{ds}{s} c_{0} s \Pi_{had}(s) \Big|_{p\text{QCD}} \\ a_{\mu}^{\text{HLO}(\text{III})} &= \frac{\alpha^{2}}{3\pi^{2}} \int_{s_{\text{th}}}^{s_{0}} \frac{ds}{s} [K(s) - K_{1}(s)] R(s) \\ a_{\mu}^{\text{HLO}(\text{IV})} &= \frac{\alpha^{2}}{3\pi^{2}} \int_{s_{0}}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_{1}(s)] R(s) \end{aligned}$$

Compute a_{μ}^{HLO}

Rearranging the previous equations...

$$a_{\mu}^{\text{HLO}} = a_{\mu}^{\text{HLO}(I)} + a_{\mu}^{\text{HLO}(II)} + a_{\mu}^{\text{HLO}(III)} + a_{\mu}^{\text{HLO}(III)} + a_{\mu}^{\text{HLO}(IV)}$$

$$q = -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \Big|_{t=0}$$

$$a_{\mu}^{\text{HLO}(II)} = -\frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_0} \frac{ds}{s} c_0 s \Pi_{had}(s) \Big|_{p\text{QCD}}$$

$$a_{\mu}^{\text{HLO}(III)} = \frac{\alpha^2}{3\pi^2} \int_{s_{\text{th}}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] R(s)$$

$$a_{\mu}^{\text{HLO}(IV)} = \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] R(s)$$

$$HLO(IV) = \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] R(s)$$

$a_{\mu}^{ m HLO~(I)}$ from MUonE data

$$a_{\mu}^{\text{HLO (I)}} = \left. -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \right|_{t=0}$$

The relevant quantities are the derivatives of $\Delta \alpha_{had}(t)$ at t = 0.

$a_{\mu}^{ m HLO~(I)}$ from MUonE data

$$a_{\mu}^{\text{HLO (I)}} = \left. -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \right|_{t=0}$$

The relevant quantities are the derivatives of $\Delta \alpha_{had}(t)$ at t = 0.

Try different parameterizations to fit MUonE data (max 3 fit parameters, due to the statistics collected by MUonE)

$$\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3} \frac{M}{t} + \left(\frac{4}{3} \frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6} \right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \ln \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}$$
 Lepton-like

$$\Delta \alpha_{had}(t) = P_1 t \frac{1 + P_2 t}{1 + P_3 t} \qquad \qquad \Delta \alpha_{had}(t) = P_1 t + P_2 t^2 + P_3 t^3$$

Padé approxiamant 3° polynomial

$a_{\mu}^{ m HLO~(I)}$ from MUonE data

Reconstruction approximants

D. Greynat, E. de Rafael, JHEP 2022 (5)

$$\Delta \alpha_{\text{had}}(t) = \sum_{n=1}^{N} \mathscr{A}(n, L) \left(\frac{\sqrt{1 - \frac{t}{t_0}} - 1}{\sqrt{1 - \frac{t}{t_0}} + 1} \right)^n + \sum_{p=1}^{\lfloor \frac{L+1}{2} \rfloor} \mathscr{B}(2p - 1) \operatorname{Li}_{2p-1}\left(\frac{\sqrt{1 - \frac{t}{t_0}} - 1}{\sqrt{1 - \frac{t}{t_0}} + 1} \right)$$

$$\Delta \alpha_{\text{had}}(t) = A_1 \mathscr{S}_1 + A_2 \mathscr{S}_2 + A_3 \mathscr{S}_3 + B_1 \mathscr{L}_1$$

$$\mathcal{S}_{i} = \left(\frac{\sqrt{1 - \frac{t}{t_{0}} - 1}}{\sqrt{1 - \frac{t}{t_{0}} + 1}}\right); \qquad A_{i} = \mathscr{A}(i, 1) \quad i = 1, 2, 3$$
$$\mathcal{S}_{1} = \operatorname{Li}_{1}\left(\frac{\sqrt{1 - \frac{t}{t_{0}} - 1}}{\sqrt{1 - \frac{t}{t_{0}} + 1}}\right); \qquad B_{1} = \mathscr{B}(1) \qquad \qquad \mathsf{Sev}_{1}$$

Tested L = 1, N = 3 Several variants with different number of free parameters

Simplified fit: simulate the MUonE signal using time-like compilations of $\Delta \alpha_{had}$. Error bars according to the MUonE final statistics.

$$a_{\mu}^{\text{HLO (I)}} = \left. -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \right|_{t=0}$$

Minimization I				$a_{\mu}^{\text{HLO (I)}}$	(10^{-10})			
s ₀ values	LL	Padé	Pol	GdR1	GdR2	GdR3	GdR4	GdR5
$(1.8 {\rm GeV})^2$	688.7±2.2	688.7±2.9	688.9 ± 2.9	$688.2{\pm}2.2$	$688.0{\pm}2.2$	$688.0{\pm}2.2$	687.0 ± 2.3	$688.0{\pm}2.6$
$(2.5 {\rm GeV})^2$	691.7±2.2	691.6±3.0	691.8±3.0	691.0±2.2	690.8±2.2	$690.8 {\pm} 2.2$	$689.8 {\pm} 2.3$	690.9 ± 2.9
$(12 {\rm GeV})^2$	696.3±2.2	696.3±3.0	696.3±3.2	695.4±2.2	695.3±2.2	695.2±2.2	694.1±2.3	695.3±3.7
Minimization II				$a_{\mu}^{\mathrm{HLO}(\mathrm{I})}$	(10^{-10})			
<i>s</i> ⁰ values	LL	Padé	Pol	GdR1	GdR2	GdR3	GdR4	GdR5
$(1.8 {\rm GeV})^2$	688.5 ± 2.2	688.1±4.2	689.8±3.3	$688.3{\pm}2.1$	$688.4{\pm}2.1$	$688.6{\pm}2.2$	687.1±2.1	$688.4{\pm}5.8$
$(2.5 \text{GeV})^2$	689.5±2.2	689.1±4.2	690.8±3.3	689.3±2.1	$689.4{\pm}2.1$	689.6±2.2	688.1±2.1	$689.4{\pm}5.7$
$(12 \text{ GeV})^2$	690.3±2.1	689.9±4.6	691.6±3.6	689.8±2.1	690.1±2.2	690.2±2.2	688.6±2.1	690.0±5.9

 $a_{\mu}^{\rm ~HLO~(I)}$ ~ 99% of the total value.

(a_{μ}^{HLO} = 695.1×10⁻¹⁰ input from time-like data).

a_{μ}^{HLO} (II, III, IV): results

$$a_{\mu}^{\text{HLO (II)}} = \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_0} \frac{ds}{s} c_0 s \Pi_{had}(s) \Big|_{p\text{QCD}} \qquad a_{\mu}^{\text{HLO (III)}} = \frac{\alpha^2}{3\pi^2} \int_{s_{th}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] R(s)$$

$$a_{\mu}^{\text{HLO (IV)}} = \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] R(s)$$

$$\frac{\frac{M_{\mu}^{\text{HLO (IV)}}}{(1.8 \text{ GeV})^2} \frac{1.84\pm0.01}{2.94\pm0.04} \frac{0.43\pm0.01}{0.43\pm0.01} \frac{2.95\pm0.05}{2.95\pm0.05}$$

$$\frac{(12 \text{ GeV})^2}{(12 \text{ GeV})^2} \frac{1.84\pm0.01}{0.20\pm0.001} \frac{-1.695\pm0.035}{0.079\pm0.001} \frac{0.001}{0.001}$$

$$\frac{M_{\mu}^{\text{HLO (IV)}}(10^{-10})}{(1.8 \text{ GeV})^2} \frac{3.23\pm0.04}{2.54\pm0.01} \frac{0.91\pm0.02}{1.52\pm0.02} \frac{3.00\pm0.05}{(2.5 \text{ GeV})^2}$$

 $a_{\mu}^{\text{HLO (II+III+IV)}} \sim 1\%$ of the total value. ($a_{\mu}^{\text{HLO}} = 695.1 \times 10^{-10}$ input from time-like data).

Results a_{μ}^{HLO}

Results a_{μ}^{HLO}

Conclusions

- Extraction of $\Delta \alpha_{had}(t)$ using the distribution of the two scattering angles of μ -e elastic interactions: template fit technique.
- Promising strategy to control the systematic effects: use the elastic scattering events to determine the main systematics, then perform a combined fit to the signal and the residual systematic effects.
- Space-like integral to calculate a_{μ}^{HLO} : independent method, competitive with the latest evaluations (~0.35% stat. uncertainty).
- Alternative method to calculate a_{μ}^{HLO} with MUonE data: less sensitive to the parameterization chosen to model $\Delta \alpha_{had}(t)$ in the MUonE kinematic range. Comparable uncertainty to the space-like integral method.

BACKUP

 160 GeV muon beam on atomic electrons.

 $\sqrt{s} \sim 420 \,\mathrm{MeV}$

 $-0.153 \, {\rm GeV}^2 < t < 0 \, {\rm GeV}^2$

 $\Delta \alpha_{had}(t) \lesssim 10^{-3}$

Achievable accuracy

40 stations 3 ye (60 cm Be) +

years of data taking
(~4x10⁷ s)
(
$$I_{\mu} \sim 10^7 \mu^+/s$$
)
~4x10¹² events
with E_e > 1 GeV

 \sim 0.3% statistical accuracy on $a_{\mu}^{\rm HLO}$

Competitive with the latest theoretical predictions.

Main challenge: keep systematic accuracy at the same level of the statistical one

Systematic uncertainty of 10 ppm at the peak of the integrand function (low θ_e , large θ_μ)

Main systematic effects:

- Longitudinal alignment (~10 μm)
- Knowledge of the beam energy (few MeV)
- Multiple scattering (~1%)
- Angular intrinsic resolution (few %)

Difference K₁(s) - K(s)

Tools used for the current analysis

- NLO MonteCarlo generator: MESMER
 - Allows to change the muon beam energy and simulate the beam energy spread.
- C++ fast simulation to include detector effects:
 - Multiple scattering effects in the target.
 - Angular intrinsic resolution.
 - Effects applied to (θ_e, θ_μ) taken from the NLO generator: track reconstruction effects are currently neglected.
- Combine software to include the systematic effects.

Simultaneous fit signal + nuisance parameters @L_{TR}

If the systematics are not taken into account in the fit...

If the nuisance parameters are introduced in the fit procedure...

Systematic error on the muon beam energy

Accelerator division provides E_{beam} with O(1%) precision (~ 1 GeV). It must be controlled by a physical process.

Effects of such shift on E_{beam} can be seen in our data in 1h of data taking per station.

Systematic error on the beam energy scale

Effect of a ± 15 MeV shift

5 pb⁻¹ expected sensitivity on $\Delta \alpha_{had}(t)$

Expected luminosity: 5 pb⁻¹

Low sensitivity to the hadronic running ($\Delta \alpha_{\rm had}(t)$ < $10^{\text{-3}}$)

~10° events with E₂ > 1 GeV

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$

 $K = 0.137 \pm 0.028$ (20% stat error)

We will be sensitive to the leptonic running ($\Delta \alpha_{\rm lep}(t)$ < $10^{\text{-2}}$)

The Combine analysis tool is used to include the nuisance parameters in the fit procedure.

2 classes of nuisance parameters currently included:

- Normalization nuisance parameters, v
- Shape nuisance parameters, μ

Binned likelihood fit:

 k_i = events in the *i*-th bin of data n_i = events in the *i*-th bin of a given template N = total number of bins

Nuisance parameters are used to adjust n_i and make it fit to k_i .

$$n_i \rightarrow n_i(\vec{\nu}, \vec{\mu})$$

Normalization nuisance parameters

Used to account for residual shifts in the normalization of template distributions with respect to data.

The expected number of events is modified as follows:

$$n_i \rightarrow n_i(\nu) = n_i(1 + \varepsilon)^{\nu}$$
Relative uncertainty
on the systematic effect

Example: systematic error due to a limited knowledge of the luminosity

Shape nuisance parameters

Used to control effects that change the *shape* of the differential cross section.

The expected number of events in each bin is modified as:

$$n_i \to n_i(\mu) = n_i [1 + s_i(\mu)]$$

Spline ensuring continuity and differentiability of 1st and 2nd derivatives. Each bin has its own spline.

$$s_i(\mu) = \begin{cases} \frac{1}{2} \left[(\delta_i^+ - \delta_i^-)\mu + \frac{1}{8} (\delta_i^+ + \delta_i^-) (3\mu^6 - 10\mu^4 + 15\mu^2) \right] & |\mu| \le 1 \\ \delta_i^+ \mu & \mu > 1 \\ -\delta_i^- \mu & \mu < -1 \end{cases}$$

Shape nuisance parameters

$$s_i(\mu)$$
 depends on $~~\delta^\pm_i = rac{n^\pm_i - n^0_i}{n^0_i}$

Analysis workflow

Hộn**e**

- Combine performs a likelihood fit to the nuisance parameters for each template.
- Obtain the profile likelihood as a function of K.
- Best fit value of K is determined by parabolic interpolation among the template points.
- Nuisance parameters values for K = K_{best fit} are obtained by interpolation among the values obtained in the first step.

Promising strategy: staged approach.

- 1. Use a small fraction of data to refine the knowledge of the main sources of systematic error with respect to the initial modelization.
- 2. Include the residual systematics as nuisance parameters in a combined fit with the signal parameter on the entire dataset.

Currently tested on the Test Run statistics including the main systematic errors.

Generate a pseudo-data sample introducing shifts in the main sources of systematic error with respect to the expectations.

Source of systematics	Shift in the pseudo-data	Expected uncertainty
Beam energy scale	$E_{beam} \rightarrow E_{beam} + 6 \mathrm{MeV}$	$\Delta E_{\rm beam}=\pm 1{\rm GeV}$
Multiple scattering	$\sigma_{\rm MS} \rightarrow \sigma_{\rm MS} + 0.5\%$	$\Delta \sigma_{\rm MS} = \pm 1\%$
Angular intrinsic resolution	$\sigma_{\rm Intr} \to \sigma_{\rm Intr} + 5\%$	$\Delta \sigma_{\rm Intr} = \pm 10\%$
Luminosity		$\varepsilon = 1\%$

Are we able to determine precisely K and the nuisance parameters using this analysis strategy?

Step 1: identify the main systematic effects

- Template fit as a function of E_{beam}.
- μ_{MS} : nuisance parameter for systematics on the multiple scattering.
- μ_{Intr} : nuisance parameter for systematics on the angular intrinsic resolution.
- v: nuisance parameter for systematics on the normalization.

Selection cuts	Fit results
	$\Delta E_{\rm beam} = (0.006 \pm 0.006) \mathrm{GeV}$
$\theta_e \leq 32 \mathrm{mrad}$	$\mu_{ m Intr} = (4.9 \pm 0.1)\%$
$\theta_{\mu} \ge 0.2 \mathrm{mrad}$	$\mu_{ m MS} = (0.6 \pm 0.1)\%$
	$\nu = 0.01 \pm 0.03$

Similar results also for different selection cuts.

Update the knowledge on the sources of systematic error

Exploit results obtained in step 1 to refine the knowledge on the sources of systematic error.

Source of systematics	Expected uncertainty
Beam energy scale	$\Delta E_{\rm beam} = \pm 1 {\rm GeV}$
Multiple scattering	$\Delta \sigma_{\rm MS} = \pm 1\%$
Angular intrinsic resolution	$\Delta \sigma_{\text{Intr}} = \pm 10\%$

Update the knowledge on the sources of systematic error

Exploit results obtained in step 1 to refine the knowledge on the sources of systematic error.

Source of systematics	Expected uncertainty	Updated model
Beam energy scale	$\Delta E_{\rm beam} = \pm 1 {\rm GeV}$	$\Delta E_{\rm beam} = \pm 20 {\rm MeV}$
Multiple scattering	$\Delta \sigma_{\rm MS} = \pm 1\%$	$\sigma_{\rm MS} \to \sigma_{\rm MS} + 0.6\%$ $\Delta \sigma_{\rm MS} = \pm 0.5\%$
Angular intrinsic resolution	$\Delta \sigma_{\rm Intr} = \pm 10\%$	$\sigma_{\rm Intr} \to \sigma_{\rm Intr} + 5\%$ $\Delta \sigma_{\rm Intr} = \pm 0.6\%$

Use this improved modelization to perform the combined fit to K and the residual systematics.

Fit of MS nuisance using different pseudodata shifts

