Performance of MUonE DAQ in the Test Run 2023

David Monk 09/11/2023

This material is based upon work supported by the National Science Foundation under Grant No. 2111556

Overview

- 2023 Test Run
 - M2 Beam Line
 - Experimental Setup
 - Front End Hardware
 - Back End Hardware
 - Operations
- Commissioning Results
 - Synchronisation
 - Threshold Tuning
 - Noise
- Initial Analysis
 - Module Efficiency
 - System Efficiency
 - Resolution
- Hardware Track Finding
- Conclusions

2023 Test Run

Introduction

 The MUonE experiment in collaboration with CMS has conducted several beam tests in the last two years to develop and test its DAQ system, most recently August/September 2023

- CERN M2 beamline
 - Secondary beam generated from SPS (T6 target)
 - Up to 2x10⁸ muons per spill, 50 MHz asynchronous rate
 - 160 GeV muons or 40 GeV electrons (lower intensity)

Experimental Setup I - Stations

- 12 2S modules, housed in 2 'stations'
 - 6 modules per station
 - 2S module mounted on custom Invar plates, each chilled to within +/- 0.5°C (18°C inlet)
 - Dry environment (< 3% RH)

	Module ID	lpGBT	CIC	Comments
Station 1	2S_18_5_IPG-00001	v0	CIC2	I2C patch
	2S_18_5_IPG-00002	v0	CIC2	
	2S_40_6_BEL-00005	v0	CIC2	
	2S_18_5_BEL-00003	v0	CIC2	
	2S_18_5_IPG-00005	v1	CIC2	
	2S_18_6_FNL-00004	v0	CIC2	HV patch
	2S_18_5_KIT-00001	v0	CIC2	
Station 2	2S_18_5_BRN-00010	v1	CIC2	
	DAQ/DPS (CERN#9 - 4mm)	v0	CIC2	
	DAQ/DPS (2S_18_5_KIT-00003)	v0	CIC2	
	2S_18_5_KIT-00002	v0	CIC2	
	2S_18_6_BRN-00011	v1	CIC2	

1 station

Experimental Setup II - Additional Components

- Complete setup included:
 - A 3rd station for additional modules
 - ECAL for PID
 - Removable 2/3cm carbon graphite target between stations
 - Entirely enclosed in a tent + ventilation for environmental stability

Experimental Setup III - FE Hardware

- 2S modules have been developed for the <u>CMS Phase-II Tracker upgrade</u>, composed of 2 layers of silicon strip sensors, whereby hits in the two layers are correlated to form a "stub"
- 10cm x 10cm active area, composed of 2 columns of 1016, 90 μm pitch, strips per layer
- Makes use of CERN-developed
 IpGBT+VTRx for optical readout at 5 Gbps
- Operates at "LHC" clock rate of 40 MHz
 - Asynchronous to M2 beam
 - Intended for CMS L1 trigger

Experimental Setup IV -Back End Electronics

- Serenity prototype processing card
 - AMD-Xilinx KU15P FPGA 0
 - Up to 36 lpGBT links (12 used) 0
 - Multiple 10GbE links to DAQ 0
 - Intel-based COM-Express SoM for 0 management
- DAQ PCs receive 10GbE data
 - Buffering, packaging, DQM, and ship 100GbE link direct to EOS Ο
 - \bigcirc

Serenity

Server PCs

10/100GbE switch

II Workshop on Muon Precision Physics 2023

Operations

- 23 data taking runs recorded
 - 350 TiB of raw data
 - 24 trillion stubs!
- Live histogramming in firmware at 40MHz to monitor beam and DAQ status in real time
 - Beam profiles
 - Link occupancy
 - Error flags and counts
- All monitoring data aggregated and displayed using Prometheus/Grafana

	FE Uplink Ready		FE Aligner Status		FE Aligner Sync	
	Linic 0	Ready	Link: 0, CIC: 0	Locked	Link: 0, CIC: 0	Locked
_	Link-1	Deedu	Link: 0, CIC: 1 Link: 1, CIC: 0	Locked	Link: 0, CIC: 1	Locked
	Lanc. 1	Reauy	Link: 1, CIC: 1	Locked	Link: 1, CIC: 1	Locked
		Ready	Link: 2, CIC: 0	Locked	Link: 2, CIC: 0	Locked
	Linic 3		Link: 2, CIC: 1	Locked	Link: 2, CIC: 1	Locked
		Ready	Link: 3, CIC: 0	Locked	Link: 3, CIC: 0	Locked
	Linic 4		Link: 4. CIC: 0	Locked	Link: 4. CIC: 0	Locked
		кеаду	Link: 4, CIC: 1	Locked	Link: 4, CIC: 1	Locked
	Link: 5	Doody	Link: 5, CIC: 0	Locked	Link: 5, CIC: 0	Locked
			Link: 5, CIC: 1	Locked	Link: 5, CIC: 1	Locked
	Link: 6	Ready	Link: 6, CIC: 0	Locked	Link: 6, CIC: 0	Locked
			Link: 6, CIC: 1	Locked	Link: 6, CIC: 1	Locked
		Ready	Link: 7, CIC: 0	Locked	Link: 7, CIC: 0	Locked
	Linic 8		Link: 8, CIC: 0	Locked	Link: 7, CIC: 1	Locked
		Ready	Link: 8, CIC: 1	Locked	Link: 8, CIC: 1	Locked
	165.0	Ready	Link: 9, CIC: 0	Locked	Link: 9, CIC: 0	Locked
	Luit D		Link: 9, CIC: 1	Locked	Link: 9, CIC: 1	Locked
	Link: 10	Ready	Link: 10, CIC: 0	Locked	Link: 10, CIC: 0	Locked
			Link: 10, CIC: 1	Locked	Link: 11, CIC: 0	Locked
u	Link: 11	Ready	Link: 11, CIC: 0	Locked	Link: 10, CIC: 1	Locked
			Link: 11, CIC: 1	Locked	Link: 11, CIC: 1	Locked

Zero transient sync/SEU-type errors observed - over 1 month operation!

Commissioning

Commissioning: synchronisation

- Successful synchronisation of stub data across 12 modules to within 1ns
 - Using (asynchronous) beam

DLL scans for three example modules

- Remove ToF and other intrinsic delays wrt module 0
 - DTC shows IpGBTv1 latency is improved by ~1 BX
 - Synchronisation achieved using:
 - FastCommand delays first (BX resolution)
 - CBC DLL tuning (~1ns resolution)

Commissioning: threshold tuning

• Threshold scans taken both with and without beam

- When commissioning 2S modules, possible to optimise for efficiency, noise or resolution
 - Not all at the same working point
 - Decision must be taken as to which measurable is most important

• Possible in future to tune individual CBCs on each module to equalise gain differences

Commissioning: noise issues

Module #6

- Module #6 (FNL_00004) suffered from unexplained noise
 - Not detected using standard offset tuning & noise scan in Ph2ACF
 - Visible from stub data accumulated online → low rate (~4kHz)
 - External (to station) sources ruled out
 - \circ $\,$ Module arrived with patch to HV assumed related

- Except module #2 (IPG_00002) spontaneously developed a similar problem towards end of BT
 - No obvious explanation for sudden change
 - Obvious from on/offline data \rightarrow high rate (~36kHz)
 - Multiplicity quite flat...
 - \circ External (to station) sources ruled out

• Modules back in lab for further investigations

Initial Results

Initial Results I - Module Efficiency

- Analysis ongoing, strange effects still observed in data
 - All 12 modules show loss of efficiency at high intensity
 - Correlated with beam profile
 - \circ Some worse than others
- No obvious explanation yet
 - \circ CBC truncation ruled out
 - CIC truncation is too small an effect (no evidence so far)
- Plenty of analysis to do here
 - Needs some attention

Initial Results II - System-wide Efficiency

- Simple stub counting seems to show good overall efficiency, suggesting module efficiency measurements are not independent
- Promising result when considering future proposals and timescales
- Studies must now be extended to more complex track reconstruction

R. Pilato

Initial Results III - Resolution

- Resolution measurement in good agreement with previous CMS beam tests
- Expect ~26 µm for un-tilted modules, less for tilted
- Significant improvement seen when using bend information
- Resolution not consistent between modules in same class alignment effects?

Landmark Result

Online tracking

- Online selection of single muon events
 - 1 stub per module per event
 - Separate stream to main DAQ
- HLS based track fitter included in firmware
 - \circ Based on Linear Least Squares (LLS) fit
- First demonstration of online 3D tracking with 2S modules!
 - Track parameters histogrammed in firmware
 - Necessary for future online event selection to limit readout bandwidth

Beam divergence: x vs y

Conclusions

Conclusion

- MUonE and CMS have sustained the 40 MHz readout of Phase-II Tracker modules in several joint test beams
 - 350 TiB of stub data live-streamed to EOS = 24 trillion stubs
 - Strong proof of concept for final DAQ design
- Data quality looks good, efficiency is high for the overall system
- Many candidate events identified, likelihood of extracting "physics" is high!

Additional Content

Detailed talk on DAQ for MUonE

• <u>Strategy for hardware event selection</u>

Backup

Beam Profiles

II Workshop on Muon Precision Physics 2023