Theory review of Lepton Flavour Violation

Paride Paradisi

University of Padova and INFN

Workshop on Muon Precision Physics, Liverpool, 10th November 2023

- **1** Strategies to look for New Physics at low-energy
- **2** Current status of LFV
- **3** EDMs, g-2 and cLFV interrelationship
- **4** Conclusions and future prospects

Where to look for New Physics at low-energy?

Processes very suppressed or even forbidden in the SM

- ► LFV processes ($\mu \rightarrow e\gamma$, $\mu \rightarrow e$ in N, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow 3\mu$, ...)
- CPV effects in the leptonic (e, µ) and neutron EDMs
- FCNC & CPV in B_{s,d} & D decay/mixing amplitudes
- Processes predicted with high precision in the SM
 - EWPO as $(g-2)_{\mu}$: $\Delta a_{\mu} = a_{\mu}^{exp} a_{\mu}^{SM} = (2.51 \pm 0.59) \times 10^{-9}$ (4.2 σ discrepancy!)
 - ▶ LFUV in $M \to \ell \nu$ (with $M = \pi, K, B$), $B \to D^{(*)}\ell \nu, B \to K\ell\ell', \tau$ and Z decays
- High-intensity frontier: A collective effort to determine the NP symmetries
- High-energy frontier: A unique effort to determine the NP scale

Paride Paradisi (University of Padova and INFN)

Where to look for New Physics at low-energy?

- Processes very suppressed or even forbidden in the SM
- Processes predicted with high precision in the SM

High-intensity frontier: A collective effort to determine the NP dynamics

Paride Paradisi (University of Padova and INFN)

Experimental status

Process	Present	Experiment	Future	Experiment
$\mu ightarrow oldsymbol{e} \gamma$	$4.2 imes 10^{-13}$	MEG	$pprox 6 imes 10^{-14}$	MEG II
$\mu ightarrow$ 3 $m{e}$	$1.0 imes 10^{-12}$	SINDRUM	$pprox$ 10 $^{-16}$	Mu3e
$\mu^- \: Au ightarrow oldsymbol{e}^- \: Au$	$7.0 imes10^{-13}$	SINDRUM II	?	
μ^- Ti $ ightarrow e^-$ Ti	4.3×10^{-12}	SINDRUM II	?	
$\mu^- \: Al o oldsymbol{e}^- \: Al$	—		$pprox 10^{-16}$	COMET, MU2e
$ au ightarrow oldsymbol{e} \gamma$	$3.3 imes10^{-8}$	Belle & BaBar	$\sim 10^{-9}$	Belle II
$ au o \mu \gamma$	$4.4 imes10^{-8}$	Belle & BaBar	$\sim 10^{-9}$	Belle II
$ au ightarrow {f 3} {m e}$	$2.7 imes10^{-8}$	Belle & BaBar	$\sim 10^{-10}$	Belle II
$ au ightarrow {f 3} \mu$	$2.1 imes10^{-8}$	Belle & BaBar	$\sim 10^{-10}$	Belle II
<i>d</i> _e (e cm)	$1.1 imes 10^{-29}$	ACME	$\sim 3 imes 10^{-31}$	ACME III
$d_{\mu}({ m e~cm})$	$1.8 imes10^{-19}$	Muon (g-2)	$\sim 10^{-22}$	PSI

Table: Present and future experimental sensitivities for relevant low-energy observables.

- So far, only upper bounds. Still excellent prospects for exp. improvements.
- We can expect a NP signal in all above observables below the current bounds.

Charged LFV in the SM

GIM mechanism very effective in LFV transitions
 amplitude proportional to A(μ → eγ) ∝ m_ν² Very small !!!

$$BR(\mu \to e\gamma) \simeq \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\bar{\nu})} = \frac{3\alpha}{32\pi} \left| \sum_{k=1,3} \frac{U_{\mu k} U_{ek}^* m_{\nu_k}^2}{M_W^2} \right|^2.$$

BR($\mu \to e\gamma$) = 10⁻⁵⁵ ÷ 10⁻⁵⁴
similar suppressions for $\mu \to 3e, \tau \to 3\mu, \mu \to e, \dots$

Why flavor violation is visible in neutrino oscillation while it's not in charged LFV? The uncertainty principle sets the oscillation time for $\mu \rightarrow e\gamma$ to be $t \sim h/M_W$!

Paride Paradisi (University of Padova and INFN)

Why do we need New Physics (NP)?

- Gravity $\implies \Lambda_{\text{Planck}} \sim 10^{18-19}~{\rm GeV}$
- Neutrino masses $\implies \Lambda_{see-saw} \lesssim 10^{15} \ {\rm GeV}$
- BAU: evidence of CPV beyond SM
 - ► Electroweak Baryogenesis $\implies \Lambda_{NP} \lesssim \text{TeV}$
 - ► Leptogenesis $\implies \Lambda_{see-saw} \lesssim 10^{15} \text{ GeV}$
- Dark Matter (WIMP) $\Longrightarrow \Lambda_{NP} \lesssim \text{TeV}$
- Hierarchy problem: $\implies \Lambda_{NP} \lesssim \text{TeV}$

SM = effective theory at the EW scale

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{d \geq 5} rac{\mathcal{C}_{ij}^{(d)}}{\Lambda_{NP}^{d-4}} \; \mathcal{O}_{ij}^{(d)}$$

•
$$\mathcal{L}_{\mathrm{eff}}^{d=5} = \frac{y_{\nu}^{ij}}{\Lambda_{\mathrm{see-saw}}} L_i L_j \phi \phi,$$

• $\mathcal{L}_{\mathrm{eff}}^{d=6}$ generates FCNC operators

EFT approach to NP

• Dynamics below the scale \wedge [\sim mass of new particles] is described by $L_{
m eff}$

L_{eff} is built out of relevant low-energy degrees of freedom (SM fields)

- ▶ L_{eff} respects the SM gauge symmetries $G_{\text{SM}} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
- L_{eff} is organized in inverse powers of Λ (amplitudes suppressed by powers of E/Λ)

Experiments at the precision frontier probe energy scale ∧ and symmetries of the new interactions (coeff. & structure of Ô^(d)_n)

Paride Paradisi (University of Padova and INFN)

Complete list of dim-6 LFV operators

4-leptons operators		Dipole operators		
$egin{array}{c} Q_{\ell\ell} \ Q_{ee} \ Q_{\ell e} \end{array}$	$\begin{array}{c} (\bar{L}_L \gamma_\mu L_L) (\bar{L}_L \gamma^\mu L_L) \\ (\bar{e}_R \gamma_\mu e_R) (\bar{e}_R \gamma^\mu e_R) \\ (\bar{L}_L \gamma_\mu L_L) (\bar{e}_R \gamma^\mu e_R) \end{array}$	$Q_{eW} \ Q_{eB}$	$egin{aligned} & (ar{L}_L\sigma^{\mu u}e_R) au_I\Phi W^I_{\mu u} \ & (ar{L}_L\sigma^{\mu u}e_R)\Phi B_{\mu u} \end{aligned}$	
	2-lepton 2	2-quark operators		
$Q^{(1)}_{\ell q} Q^{(3)}_{\ell q} Q^{(3)}_{\ell q} Q_{\ell q} Q_{\ell d} Q_{\ell d}$	$ \begin{pmatrix} (\bar{L}_L \gamma_\mu L_L) (\bar{Q}_L \gamma^\mu Q_L) \\ (\bar{L}_L \gamma_\mu \tau_I L_L) (\bar{Q}_L \gamma^\mu \tau_I Q_L) \\ (\bar{e}_R \gamma^\mu e_R) (\bar{Q}_L \gamma_\mu Q_L) \\ (\bar{L}_L \gamma_\mu L_L) (\bar{d}_R \gamma^\mu d_R) \\ (\bar{e}_R \gamma_\mu e_R) (\bar{d}_R \gamma^\mu d_R) \end{pmatrix} $	$egin{array}{c} Q_{\ell u} \ Q_{eu} \ Q_{\ell edq} \ Q_{\ell equ} \ Q_{\ell equ} \ Q_{\ell equ} \ Q_{\ell equ}^{(1)} \ Q_{\ell equ}^{(3)} \end{array}$	$ \begin{array}{c} (\bar{L}_L\gamma_{\mu}L_L)(\bar{u}_R\gamma^{\mu}u_R) \\ (\bar{e}_R\gamma_{\mu}e_R)(\bar{u}_R\gamma^{\mu}u_R) \\ (\bar{L}_{a}^{a}e_R)(\bar{d}_RQ_{a}^{a}) \\ (\bar{L}_{a}^{a}e_R)\epsilon_{ab}(\bar{Q}_{b}^{b}u_R) \\ (\bar{L}_{a}^{i}\sigma_{\mu\nu}e_R)\epsilon_{ab}(\bar{Q}_{b}^{b}\sigma^{\mu\nu}u_R) \end{array} $	
	Lepton-1	Higgs operators		
$egin{array}{c} Q^{(1)}_{\Phi\ell} \ Q_{\Phi e} \end{array}$	$\mu \to e\gamma \qquad \mu$	$\begin{array}{c} Q^{(3)}_{\Phi\ell} \\ Q_{e\Phi3} \end{array} \\ \rightarrow 3e \qquad \mu \rightarrow \end{array}$	$\begin{pmatrix} (\Phi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \Phi)(\bar{L}_{L}\tau_{l}\gamma^{\mu}L_{L}) \\ (\bar{L}_{L}e_{R}\Phi)(\Phi^{\dagger}\Phi) \end{pmatrix}$	

Paride Paradisi (University of Padova and INFN)

Bounds on the NP scale

[Physics Briefing Book, 1910.11775]

Probing NP in the leptonic sector

New Physics for the muon g - 2: at which scale?

• Δa_{μ} discrepancy at $\sim 4.2 \sigma$ level:

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) \times 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} \approx (a_{\mu}^{\text{SM}})_{weak} \approx rac{m_{\mu}^2}{16\pi^2 v^2} \approx 2 \times 10^{-9}$

- ▶ NP is at the weak scale ($\Lambda \approx \nu$) and weakly coupled to SM particles.*
- ▶ NP is very heavy ($\Lambda \gg v$) and strongly coupled to SM particles.
- ▶ NP is very light ($\Lambda \lesssim 1$ GeV) and feebly coupled to SM particles.

*Favoured by the *hierarchy problem* and by a WIMP DM candidate but disfavoured by the LEP and LHC bounds (supersymmetry being the most prominent example).

• NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = \boldsymbol{e} \frac{\boldsymbol{m}_{\ell}}{2} \left(\bar{\ell}_{\boldsymbol{R}} \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'} \ell_{\boldsymbol{L}}' + \bar{\ell}_{\boldsymbol{L}}' \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'}^{\star} \ell_{\boldsymbol{R}} \right) \boldsymbol{F}^{\mu\nu} \qquad \ell, \ell' = \boldsymbol{e}, \mu, \tau \,,$$

Branching ratios of $\ell
ightarrow \ell' \gamma$

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_{\ell} \bar{\nu}_{\ell'})} = \frac{48\pi^3 \alpha}{G_F^2} \left(|A_{\ell\ell'}|^2 + |A_{\ell'\ell}|^2 \right).$$

Δa_ℓ and leptonic EDMs

$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}), \qquad \qquad \frac{d_{\ell}}{e} = m_{\ell} \operatorname{Im}(A_{\ell\ell}).$$

• "Naive scaling": a broad class of NP theories contributes to Δa_{ℓ} and d_{ℓ} as

$$rac{\Delta a_\ell}{\Delta a_{\ell'}} = rac{m_\ell^2}{m_{\ell'}^2}, \qquad \qquad rac{d_\ell}{d_{\ell'}} = rac{m_\ell}{m_{\ell'}}.$$

Model-independent predictions

•
$${
m BR}(\ell_i o \ell_j \gamma)$$
 vs. $(g-2)_\mu$

$$\begin{aligned} \mathrm{BR}(\mu \to \boldsymbol{e}\gamma) &\approx 3 \times 10^{-13} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{e\mu}}{10^{-5}}\right)^2 \\ \mathrm{BR}(\tau \to \mu\gamma) &\approx 4 \times 10^{-8} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{\mu\tau}}{10^{-2}}\right)^2 \end{aligned}$$

• EDMs vs.
$$(g-2)_{\mu}$$

$$\begin{array}{ll} d_e &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 10^{-29} \left(\frac{\phi_e^{PV}}{10^{-5}}\right) \ e \ {\rm cm} \,, \\ \\ d_\mu &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 2\times 10^{-22} \ \phi_\mu^{CPV} \ e \ {\rm cm} \,, \end{array}$$

• Main messages:

- $\Delta a_{\mu} pprox (3 \pm 1) imes 10^{-9}$ requires a nearly flavor and CP conserving NP
- **Large effects in the muon EDM** $d_{\mu} \sim 10^{-22} \ e \ {
 m cm}$ are still allowed!

[Giudice, P.P., & Passera, '12]

Paride Paradisi (University of Padova and INFN)

Experimental status of the muon EDM

[Crivellin, Hoferichter & Schmidt-Wellenburg, '18]

$$d_{\mu} ~~\simeq~~ \left(rac{\Delta a_{\mu}}{3 imes 10^{-9}}
ight) 2 imes 10^{-22} ~\phi_{\mu}^{
m {\it CPV}} ~~ e~{
m cm} \,,$$

[Giudice, PP & Passera, '12]

LFV operators @ dim-6

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda_{LFV}^2} \, \mathcal{O}^{dim-6} + \dots \, . \label{eq:left}$$

 $\mathcal{O}^{\dim -6} \ni \ \bar{\mu}_{R} \, \sigma^{\mu\nu} \, H \, \boldsymbol{e}_{L} \, \boldsymbol{F}_{\mu\nu} \, , \ \left(\bar{\mu}_{L} \gamma^{\mu} \boldsymbol{e}_{L} \right) \left(\bar{f}_{L} \gamma^{\mu} f_{L} \right) \, , \ \left(\bar{\mu}_{R} \boldsymbol{e}_{L} \right) \left(\bar{f}_{R} f_{L} \right) \, , \ f = \boldsymbol{e}, \boldsymbol{u}, \boldsymbol{d}$

- $\ell \to \ell' \gamma$ probe ONLY the dipole-operator (at tree level)
- $\ell_i \rightarrow \ell_j \bar{\ell}_k \ell_k$ and $\mu \rightarrow e$ in Nuclei probe dipole and 4-fermion operators
- When the dipole-operator is dominant:

$$BR(\ell_i \to \ell_j \ell_k \bar{\ell}_k) \approx \alpha \times BR(\ell_i \to \ell_j \gamma)$$
$$CR(\mu \to \boldsymbol{e} \text{ in } \mathsf{N}) \approx \alpha \times BR(\mu \to \boldsymbol{e} \gamma)$$

$$\frac{\mathrm{BR}(\mu \to \mathbf{3e})}{\mathbf{3} \times \mathbf{10^{-15}}} \approx \frac{\mathrm{BR}(\mu \to \mathbf{e}\gamma)}{\mathbf{5} \times \mathbf{10^{-13}}} \approx \frac{\mathrm{CR}(\mu \to \mathbf{e} \text{ in } \mathsf{N})}{\mathbf{3} \times \mathbf{10^{-15}}}$$

- Ratios like $Br(\mu
 ightarrow e\gamma)/Br(au
 ightarrow \mu\gamma)$ probe the NP flavor structure
- Ratios like $Br(\mu
 ightarrow e\gamma)/Br(\mu
 ightarrow eee)$ probe the NP operator at work

Longstanding muon g – 2 anomaly

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) \times 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} \approx (a_{\mu}^{\text{SM}})_{weak} \approx rac{m_{\mu}^2}{16\pi^2 v^2} \approx 2 \times 10^{-9}$

Testing the muon g - 2 anomaly through the electron g - 2

$$\frac{\Delta a_e}{\Delta a_\mu} = \frac{m_e^2}{m_\mu^2} \qquad \Longleftrightarrow \qquad \Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) 0.7 \times 10^{-13}$$

► a_{θ} has never played a role in testing NP effects. From $a_{\theta}^{\text{SM}}(\alpha) = a_{\theta}^{\text{EXP}}$, we extract α which was is the most precise value of α up to 2018!

- The situation has now changed thanks to th. and exp. progresses.
- \triangleright α can be extracted from atomic physics and a_e used to perform NP tests!

[Giudice, P.P, & Passera, '12]

Conclusions and future prospects

Important questions in view of ongoing/future experiments are:

- What are the expected deviations from the SM predictions induced by TeV NP?
- Which observables are not limited by theoretical uncertainties?
- In which case we can expect a substantial improvement on the experimental side?
- What will the measurements teach us if deviations from the SM are [not] seen?

• (Personal) answers:

- We can expect any deviation from the SM expectations below the current bounds.
- LFV processes, leptonic EDMs and LFUV observables do not suffer from theoretical limitations and there are still excellent prospects for experimental improvements.
- ▶ If the muon g 2 anomaly will survive, we expect relevant enhancements in leptonic EDMs (especially in the muon EDM) and LFV decays $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$,
- ▶ Testing New Physics effects in the electron g 2 at the 10^{-13} is not too far! This will bring a_e to play a pivotal role in probing New Physics in the leptonic sector.

Message: an exciting Physics program is in progress at the Intensity Frontier!