HH->bbtt

And use of MVA

Carl Gwilliam

20th September 2023 From Graph NN to Explainable AI

Introduction

- Search for non-resonant Higgs-pair (HH) production to measure Higgs self-coupling (λ_{HHH})
 - In addition, search for Beyond-the-SM (BSM) resonant di-Higgs production giving a peak in the HH mass

- Complex final state consisting of two b-quarks, two τ-leptons and missing transverse energy (MET)
 - Two separate channels depending on decay of taus: both hadronic or one leptonic + one hadronic

Signature: compnents

• B-quarks

- Clusters of E in calorimeter (jets)
- Tracks with displace vertex due to lifetime

τ-leptons

- Leptonic (1 track) or hadronic (1 or 3 tracks)
- Narrow E deposit in calorimeter

- Missing transverse energy (MET):
 - Imbalance in energy in transverse plane due to neutrinos from τ (and b-) decays

Signature: putting it together

• Example LepHad event

• Example HadHad event

• Yellow lines are tracks while green (yellow) boxes are EM (hadronic) calorimeter energy clusters

Previous approach

- Construct $m_{\tau\tau}$ using system of unconstrained equations using Missing Mass Calculator
 - <u>https://arxiv.org/abs/1012.4686</u>
- BDT or DNN classifier (parametrised in terms of mass for the resonance case)
 - Based on high-level variables: kinematics, angular separations, invariant masses

Significant level of background from a range of processes

Questions

- Is this signal-background discrimination suited for a GNN approach?
 - How would we approach that?
- Would we gain by using low-level variables directly (or a mix of low- and high-level)?
 - Rather than e.g. reconstructing b-jets and τ -leptons first and using those
 - How best to present those to the MVA?
- Additionally, can we use an MVA regression for the $m_{\tau\tau}$ mass reconstruction?
 - Which type is best suited for this?