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Motivation

s Targeting direct EWK production of chargino-neutralino pairs and chargino pairs,
decaying into LSP via on-shell Higgs bosons.

< LSPs (Lightest SUSY Particles), specifically the lightest neutralino 7 and its
decay mechanisms, as predicted by Supersymmetry models, could explain the
observed discrepancy in the g-2 measurement with respect to the SM predictions T ¢
and itself plays an important role as a Dark Matter candidate

+» Typical HEP case-study:

1. Extract small signal of interest from large SM background

2. Subtle/complex differences in variable correlations distinguish signal from background

3. Complex numerical instance data, well-defined categories (underlying physics processes, 5 in our case)
—This is the classic use-case for ML classification.

4. Build ML discriminator (XGBoost ) to distinguish backgrounds from SUSY signals, trained on simulated
Monte Carlo (split in 80:20 for training:validation) samples and use classifier output score as a discriminant
variable for hypothesis testing



ML approach/challenge

« Training uses MC samples for both train and test sets
(split in 80:20 for training:validation)

»  Before training, the modelling of the input variables are verified by
comparing the input variable distributions of the SM backgrounds
with data and comparing the linear correlations

«  Signal category includes samples with

mig//\;i - m)z? <= 200GeV

The impact on the discovery potential arises from:

(1) limited statistics of simulated samples used for BDT training and
impact on event classification process discrimination
(2) Similarity of Sig Scores to Background which impacts the final

acceptance (see backup)
(3) systematic uncertainties on the modelling of the backgrounds which

distort the training outcomes (see backup slides)

ML variable inputs
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Kinematic Variables

Background variables are broad identifying

functions and not detector-based signatures © Pt Em"" E,,o ©F aiasinana Ew E
of particle interactions — oo i =i o
» Kinematic distributions are correlated "
* Need a specialized treatment of ’
Sig/Bkg overlap e S i
» Powerful decorrelators and highly BV et et e e
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Signal region optimisation

> Problems only partly mitigated so far:

o

Better understanding of the distribution of most influential
variables with SHAP (It evaluates the change in each
output score when a feature is considered vs not

considered)

Better Understanding of statistics in samples
(systematics studies in backup slides)

The signal region is defined at high signal score. Note:
the background scores are irrelevant as the 1 vs all
training method makes them irrelevant in the instance
where we are targeting signals.
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GNN-based Upgrade???

» Trusting the ML outcome:
- Dependence on a given observable, minimize correlations

- Dependence on large systematics in the model = How does a signal look like?
-> Biasing of identified events: what features do these events have Q'\ Pl conpgonence:
and are they what we expect ? <2$ B
- Can we discriminate and understand a structure in latent space? - - ‘(\Q %g !
N == 0

(More complex than other projects with object —based analyses) >

= Potential Transformer-based analysis Upgrade:
- Does a GNN learn different features with respect to a BDT
If so, what can we gain by building such models ?
. .. = How does the NN understands true
—> Can we take our variables and structure them efficiently from positive (signal), true negative or
cloud to Graph-based format ? false positive ?
- Can a parametrization with Generative Adversarial Networks
serve the purpose of reducing dependence on detailed modelling ?
- Can we generate an inverted structure in latent space to better
understand variable shapes, systematics and correlations ?




T1.2: HEP1-DARK

Search for “dark” photons, light particles belonging to a new hidden sector
not yet discovered because too feebly interacting with ordinary matter:
® Inthis case, signal leaves different signature in the detector
wrt background
®  signal signature is effectively an unknown — study of
systematics on the signal is non-trivial

® ML discriminator (3D-CNN) uses image classification trained
to distinguish background processes from signal mapping
clusters of hadrons (jets) in 3D coordinates

IThe ATLAS detector orthogonal view I
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T1.2| HEP1-DARK (M1-M24; responsible: 6; involved: 6): Use Dynamic Graph CNN to exploit
multi-dimensional inputs and capabilities of describing irregular geometries. Compare
results to those obtained merging of CNN approaches with graphs. Implement and
evaluate xAl algorithms (see T1.3). Analyse Run2 data, prepare tools for Run3. Staff: PI,
postdoc in M7-M24, un-costed UoL co-investigator (Dr C. Sebastiani) and PhD student.
Role of the participants: data analysis, tools preparation, paper editors.

In the ATLAS data-analysis:
Build a map of jet energy deposits in ATLAS
detector from: calorimeter cell positions (eta,

phi, sampling layer) and energy



https://arxiv.org/abs/2206.12181

TauJETGraphs: 74 Variables (54+20)

> These are the total node-level

S attributes 54 in total now < All 54 available variables are there now;
e, > Al normalized on the mean and a 1 sigma Std however, the nodes are

e TR Homogeneous. Objects do have
EM1CoreFrac", "jet t u' .

o e oo, common variables and counted once.
i eATrmckef 1tersde, Additional % 20 Global variables as they appear
e, "centFrac”, < We want to stress the relevance of
::NPosECells_EMl::, "EMPOverTrkSysP", i i

e "innerTrkAvgDist", "chargedScoreRN", cluster variables influence further and
"'SECOND_ENG_DENS", "ptRatioEflowApprox", "isolationScoreRNN", . '

i:g‘:’;‘z—" "dRmax", "conversionScoreRNN", quantlfy the Overa” ef’feCt W|th

nchiSquared”, "trFlightPathSig", "'fakeScoreRNN",

s B iy newNtuples

"energy_éMl", "SumPtTrkFrac", ::e" - "

o vabsipSigleadTrk?, SECOWD_LAMBDA",

"f1rst:taWR}Clus;erPnslt1nn7EM1", "massTrkSys",

B e "etOverPtLeadTrk",

"nInnermostPi)’(elHlts"‘, "ptIntermediateAxis",

D, "etaletSeed",

"nSCTHits", ‘phiJetSeed', . . .

Cpiseor, "jet_pt", » Global variables are normalized, added now and used in the
. A training just as July’s Talk but with 2 added: “jet_phi” and
132252232232}33221E22i§i22j$§13: “phiJetSeed”

avsinthetar, » Tracks, PFOs are all taken with their specific variables as

used in DeepSet and RNN with/without Clusters depending
on model (to be stated later)



TauJETGraphs: Data and NN Structure

» Nodes with their attributes (74 variables) are constructed in hierarchy per object from (Dict of Dicts) in HDF5 files
» Edges are added later to connect all nodes in same and across layers to build a 3D graph (Eta, Phi, layer)

:r TauTracks, 1:b NeutralPFO, 2:g ShotPFO, 3:c ConvTrack, 4:m Cluster

Objects are represent.ed in node colors:
Red for layer O (TauTracks)
Blue for layer 1 (NeutralPFOs)
Green for layer 2 (ShotPFOs)
Cyan for layer 3 (ConvTracks)
Magenta for layer 4 (Clusters)

pT can also be represented and visualised in
node “size” as seen on top right

3D visualization
Homogeneous Nodes

TauJETGraphs NN Model Pipeline

BatchNorm Layer

/Q : »
o? o
Hidden layer Hidden layer *
'] | L

. o

[ . ¥
o ®

L) L]

Input Output

ARMA Conv Layers

RLU | o ReLU

° . [ ]
o 1 4 o = ° b e en .

Global Pooling Layers

FC Linear Layer

\

Output score 9




Summary and Prospects

*  Potential Expansion: The concept of the BDT discriminant can be extended to Graph Neural Networks (GNNSs), which
may offer benefits such as improved sensitivity to New Physics signals (with unknown Signatures), more efficient feature
extraction from complex data, and the ability to capture subtle dependencies in parameter space.

*  Hoped-for Benefits of GNNs:
- Complex Data Handling: GNNs can efficiently process complex event data with varying topologies.

« Incorporating Context: GNNs can capture contextual information from parameter space, improving signal-
background discrimination, overcoming statistical and systematics limitations, and amplifying acceptance.

Finally, this analysis showcases the utility of ML techniques like BDT and offers a complex case-study to investigate potential
benefits of applying Graph Neural Networks to particle physics research, aiming for improved sensitivity and data analysis
capabilities in searches for New and Beyond Standard Model Physics.
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Scope and samples

* Signal samples with p4172 * Background samples with p4172

. * using full detector simulation.
. 2 data of 139 fb™. using
Targeting full Run 2 data o * generated using aMC@NLO +

Pythia 8. | Process  MCgenerator

1 CIN2-Wh 11lbb ! ] W+jets Sherpa 2.2.1
C e r e e e et Cross sections at NLO+NLL. T e Sherpa 2.2.1
» produced using full or fast Diboson Sherpa 2.2.1, 2.2.2
simulation depending on their ttbar Powheg + Pythia 8
mass splitting. Single top Powheg + Pythia 8
Multiboson Sherpa 2.2.1
MadGraphPythia8EvtGen_A14N23LO_C1N2_Wh_hbb_(.*?)_(.*?).py V+H Powheg + Pythia 8
< 600 . .
i C S0-100K 40K 30K tt+H Powheg + Pythia 8
é"x’ 500 C 20k 10k ©8k .
r ° 6k o4k o2k tt+V aMC@NLO + Pythla 8
. . 400:— . ° . . . .
* Targets compressed scenarios with low : e e e e
MET using ML method (XGBoost). 300 Tt * Data samples with p4173.
e Latest result with 139 fb: zoof— I A R . . * All samples are SUSY5 derivation.
Eur. Phys. J. C 80 (2020) 691 P Tt T * n-tuples production produced with AB
. _ . 100f SRR C 21.2.148 and updated CP recommendation
All hadronic analysis latest published Pty s e e e e e e e P
0500 580" b6 50 6% 700~ B0 500, 'J;?lga'v]
m xz’x; e
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Object definitions — ML Specs

* Combi-basline:
e p,>4.5GeV
* |n| <247
* LooseAndBLayerLLH
. Azosine < 0.5 mm
* Baseline:
* p,>7GeV
* Signal:
* FCLoose
* FCHighPtCaloOnly
if p.>75GeV
* TightLLH
e d/o,<5

* baseline objects + TST.
* Tight WP.

* Combi-baseline:
e p.>3GeV
* Inl<27
e Medium
. Azosine < 0.5 mm

* Baseline:
e p,>6GeV

* Inl<25
* Signal:
* Loose_VarRad
* TightTrackOnly_VarRad
if p.>75GeV

e d/o <3

0 ~do
* Bad muon veto

' PFlow Jets

« Anti-k algorithm (R = 0.4)
e p.>30GeV

* Inl<28
« JVT tight WP for p_ < 120 GeV

and |n| < 2.5

 Anti-k algorithm (R = 1.0)
 Trimmed withf =0.05andR_, =0.2
e p,>200GeV;|n<2.0

W/Z-tagging: 3-var, 50% WP

* Overlap removal procedure applied to baseline objects and relied on
SUSY background forum recommendation.

e Combination requirements on number of combi-baseline leptons

applied.

13



Triggers

* Using Single-lepton trigger
* logical OR combination of multiple single electron and single muon triggers.

Trigger Trigger name Year HLT cut [GeV] | Offline cut [GeV]

HLT_e24_lhmedium_L1EM20VH 2015 24 25
HLT _e60_lhmedium 2015 60 61

HLT_e120_lhloose 2015 120 121
single electron trigger | HLT_e26_lhtight_nodO_ivarloose | 2016-2018 26 27
HLT _e60_lhmedium_nodO 2016-2018 60 61

HLT_e140_lhloose_nod0O 2016-2018 140 141
HLT _mu20_iloose_L1MUI15 2015 20 21

single muon trigger HLT_mu26_ivarmedium 2016-2018 26 27.3

HLT_mu50 2015-2018 50 52.5

e Single lepton triggers preferred to MET triggers as compressed region might lead to softer MET (while
leptons are NOT soft as coming from a real W)

e Lepton pT requirements according to increased trigger thresholds over the years going from 25 (21)
GeV to 27 (27.3) GeV for electron (muon) events

14



Systematic uncertainties: tt / Wt interference

301 — [ Wt DR (Powheg)

e As in many other analyses before this one, the predictions of ] = e N
the MC samples generated with the diagram-subtraction || BErmenems
scheme (DS) are found VERY different from nominal ) CRst

e Yields, uncertainties and TF uncertainties in CR Single Top : 15 :
and SRs compared to unc from herwig (second largest in SRs) N [

e Validation region yields also clearly indicate that DS predictions O
are 2.5 times less than nominal > a

0l , . NN = g
0.0 0.2 0.4 0.6 0.8 1.0
BDT output
[ Wt DR (Powheg)
35 1 WtDS
Uncereiny onu »{ VRst £ WEDR (ameAThLO)
-100.00% -63.61% 25 |
02T TTIT "= a2%  5363%
2 20
TFs g
0.03821 0.03088 0.02197 0.01021 0.10127 a -
0.00331 0.02750 0.00000 0.01082 0.04163 104
0.04898 0.04795 0.03400 0.02240 0.15333
DS: (-0.5879325349048276)
TF unceraingy B It
0. iy m—
-100.00% 5.94% - " . . : : : : 15
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

28.20% 55.26% 54.80% 119.34% 51.41% BDT output



Additional test and adoption of 35%

e |t was suggested to normalize the DS yields to the DR - ===
(nominal) and consider as uncertainty the residual ) Z .
shape uncertainty 8 L 35%

e A good solution in principle — however the issue is that o
DS predictions in Signal regions are practically 0 hence N N = =

ppppppppp

there is not much to be normalized there: (@) CR single top
o  Very few raw events pass the selection B B

324 262 1.86 0.87 859 - ’ |
- £ bit] 35%

0.10 0.80 0.00 0.32 1.21

e Solution:

o Add manually an uncertainty consistent with previous T Eux
studies with WWhbb truth samples: ’

m 35% for SR closer to the present selection o ! +/-35%
= Shape uncertainty from normalized ratio
lower where there is stats: conservative

y 2023 — 12:48 (o) SR inclusive.

20/07/2023 PAM Talk 16



Signal region definition

- From pre-selection to SR:
(1 )aE%niss significance raised to 8

(2)myp in the range 90-140 GeV

- Inclusive signal region: Score [0.91-1], split then in 4 bins

Exclusion regions — multibin fit using 4 bins

Wsig | 4 bins € [0.91,0.928,0.946,0.964, 1] |

yields SR_Inclusive Bin0[0.91,0.928] Bin 1[0.928,0.946] Bin2[0.946,0.964] Bin 3 [0.964, 1]
MC exp. SM+Signal events 30.95 +3.96 11.67 £2.77 8.15+2.72 6.89 +2.09 4.26 £ 141
MC exp. SM events 20.92 + 3.51 9.15+1.84 5.72 £2.04 4.05+1.14 2.01 +0.84
MC exp. Z events 0.08 +0.04 0.0419-97 0.04j‘8’;08 0.00*9-92 0.02+9-97
MC exp. W events 2.91 +1.09 1.32+0.84 0.41’:0:4} 0.60 + 0.24 0.59 +0.19
MC exp. ttbar events 7.68 +2.11 3.83+1.63 2.26 +1.88 1.29+0.86 0.30*3-33
MC exp. st events 8.59+2.18 324+ 131 2.62+1.03 1.86 £0.77 0.87 +0.70
MC exp. diboson events 0.64 £0.21 0.36 £0.20 0.14+0.11 0.0970-2 0.05 +0.04
MC exp. Higgs events 0.71£0.27 0.24*9-2 0.18 £0.05 0.14 £0.02 0.15£0.03
MC exp. ttV events 0.32+0.08 0.13 £0.07 0.06*9-30 0.08 +0.07 0.05 +0.02
MC exp. CIN2_Wh_450.0_250.0 events  10.03 + 1.83 2.51+2.07 243+ 1.79 2.84+1.49 2.25+1.13
Other signal yields (stat only)

MC exp. CIN2_Wh_250.0_100.0 events ~ 26.53 +3.78 5.85+1.72 7.06 +2.00 5.08+1.71 8.54+2.10
MC exp. CIN2_Wh_300.0_150.0 events ~ 15.13 +0.85 3.28+£0.39 4.06 +0.45 3.64+0.41 4.16 £0.45
MC exp. CIN2_Wh_350.0_200.0 events ~ 8.27 +1.73 1.91+£0.79 1.66 +0.68 0.76 + 0.56 4.14£1.27
MC exp. CIN2_Wh_400.0_250.0 events ~ 6.36 + 1.16 1.75£0.56 0.83 +0.37 1.57 +0.51 2.22+0.80

Events

Int. Z,

10*

10°
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© [y
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T — T
mtt
I Higgs
. itV
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 W+ets

1 Diboson
Z+jets

%4 SM Total

= = C1N2 Wh 250.0 100.0

e = C1N2 Wh 300.0 150.0

C1N2 Wh 350.0 200.0
= = C1N2 Wh 400.0 250.0

ATLAS Internal
Ys=13TeV, 139 fo”!
XGBFitoptimised

11—

H

|

0.92 0.93 0.94 0.95 0.96 0.97 1
XGB Signal Score

Discovery regions:

- SR d1 [wg>0.91]

- SR d2 [w,;>0.928]
- SR d3 [w,_>0.946]
- SR d4 [w__>0.964]

sig
sig
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Systematic Uncertainties

105k ATLAS Internal DV P
Ys=13TeV, 139 fb™ = 5\‘? oson %éiﬂim
VRttXGB * Data

Number of events / 110 GeV

05

§
\ﬁ
§

1 OO 500 600

(a)

F ATLAS Internal vt
E

Vs =13 TeV, 139 fo”
RHXGB

i
- Wsiets
W Diboson Z+jets

-tV 4% SM Total

® Data

Number of events / 0.10
uuﬂ umml lIHIlII‘ HIIMJ llllllll! JHIUJ 111l

X i

0
04 045 05 055 06 065 07 075 08 085 09
XGB Signal Score

Data/SM

Number of events / 110 GeV

Data/SM

Number of events / 0.20

Data/SM

105 ATLAS Internal s
E 5=13Tev, 139" Frind

10* & VRstXGB ® Data

10°E

10

10

- S\f\qle top

- lenson
otal

C1C1-Wh model SRXGB Bin 1 SRXGB Bin 2 SRXGB Bin 3 SRXGB Bin 4
[0.91, 0.928) [0.928,0.948)  [0.948, 0.964) [0.964, 1]
Total background expectation 9.41 5.73 4.15 2.15

Total background systematic

£2.13 [22.65%]  +2.03 [35.41%]

+1.39 [33.62%]

+0.73 [34.14%]

Theoretical systematic uncertainties

;E %//%//////////%ﬁ |

100 200 300 400 500 600
7 (GoV]
(b)
10° - ATLAS Internal  wies g™
E \G=13Tev, 139" F YA
10 = VRstXGB  Data
10°k-

;3 }/////“//////l//////////%

0.2 03 0.4 0.5 0.6 0.7

08 09 1
XGB Signal Score

» VR plots in Good agreement within uncertainties
(bands are large where stat is low)

tr

Single top

W+jets

Other backgrounds

+1.08 [11.5%]
+1.17 [12.4%]
+0.17 [1.8%]
+0.14 [1.7%]

+0.71 [12.3%]
+0.91 [15.8%]
+0.14 [2.4%]
+0.13 [1.8%]

+0.52 [12.4%]

+0.91 [21.9%]
+0.12 [2.7%]
0.13 [3.0%]

£0.10 [4.7%]

+0.37 [17.4%)]

+0.04 [1.7%]
0.1 [3.2%]

MC statistical uncertainties

MC statistics

+1.04 [11.0%]  +0.79 [13.9%]

+0.66 [16.0%]

+0.41 [18.8%]

Uncertainties in the background normalisation

Normalisation of dominant backgrounds

+1.26 [13.4%]  +0.89 [15.6%]

+0.51 [12.3%]

+0.19 [8.7%]

Experimental systematic uncertainties

Jet energy resolution

Jet energy scale

b-tagging

Pile-up/JVT

Lepton and E{?i“ uncertainties

111 [11.7%]  +1.15 [20.1%]
+0.52 [5.5%]  +0.31 [5.3%]
+0.12 [1.4%]  +0.75 [13.1%]
+0.43 [4.5%]  +0.49 [8.6%]
+0.05 [0.6%]  +0.36 [4.6%]

+0.57 [13.8%]
+0.33 [8.0%]
+0.05 [1.5%]
+0.29 [7.2%]
+0.14 [3.4%]

+0.41 [19.2%]
+0.07 [3.0%]
+0.06 [2.7%]
+0.09 [4.3%]
£0.12 [3.7%]

Huge effort spent to make systematics coherent with EWK,
with the only exception of a conservative 35% uncertainties
on the Wt interference term (see back-up for details)
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Analysis Summary

Number of events / 110 GeV

C1N2_Wh:

Targeting full Run 2 data of 139 fb~1.

Final state: exactly one isolated lepton (e~ or u),
2b-jets and large missing transverse momentum.
Final states with small mass-splitting (mﬁ = my)
Two b-tagged jets identify the Higgs

BDT multi-classifier scores identify
orthogonally the 4 bins of Signal Regions in the
complex compressed phase-space of C1N2

10°E /;TLAS Inlternal :3;:29;;0" g:ggs . Overall yields
103;_ Vs=13TeV, 139 fb'! :giie:ts:n ;:\,\Iama. _; g?v'l-ee Wlth

ESRinel . s es0.150) cev 3
qgel ST e oz e N predictions.
10%_ _ Interpreted in

- simplified

1 4_:; SUSY signal
1 models

107"
300

400

500 600
ETS [GeV]

Number of events

Significance

» BDT-based C1N2 Wh search for LSP exceeds previous constraints by

up to 40 GeV in the range of 200 — 260 GeV and 280 — 470 GeV in

¥i /78 mass.
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)
»
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Expected Limit, ATLAS 13 TeV, arXiv:1909.09226
Observed Limit, ATLAS 13 TeV, arXiv:1909.09226
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BDT scores Sig/Bkg

2 2
s 5
i ATLAS Internal & ATLAS Internal
{5=13TeV, 139 fo" (5= 13TeV, 139 0" ST oban
preSelection preSelection
= - : = 2T T T T T T T T T
% B R T 7> % 18-S 8 0., 9.9..0.0.0 0.2 92 0.0 0 0.0 ¢ -y
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(c) WHjets score (d) Single-top score



