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T-Leptons and The Motivations for 7},,4 |D and Decay

Mode Classification

* |ID important for several areas of research,
such as:

* H — 17 production [2]
* Di-Higgs searches with bbt 7~
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* Goal is to obtain greater background rejection and signal efficiency for ID and Decay Mode Classification

[1] Joern Mahlstedt and the ATLAS collaboration 2014 J. Phys.: Conf. Ser. 513 012021, DOI 10.1088/1742-6596/513/1/012021
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Thad Decay Cones:

Highly collimated — narrow

cone
Small cross-section
Low multiplicity

Dijet Production & Cone

Main background source of
fake t,4 are jets from QCD

Shower shape can
mimic/drown-out the
shower shape of m’s from
Thad

Fragment into multiple

hadrons (high multiplicity)
High  production
section for dijets
Wider cone area

Cross-
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https://iopscience.iop.org/article/10.1088/1742-6596/513/1/012021

Current Workflow used by ATLAS [3] & Input Variables Used

1) Track Reconstruction - Recurrent Neural Network (RNN):

*  Takes jet track information as input

* Identifies the type of jet into four categories, including t-tracks
ST T T T T V-~ """~ ----- .
[ | 2) tldentification — Recurrent Neural Network (RNN): \
| *  Takes track ID and uses information on shower shape and other I
1 properties to discriminate 7y,,4 candidates against dijets :
|
| v |
I' | 3) Decay Mode Classifier (DMC) — DeepSet Neural Network :
: (DSNN): :
I * Used to determine the type of decay, via the number of m° |
\ associated with the decay /
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Cluster inputs
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* Object refers to a candidate for either a 7y,,4 Track, ©°, photon shot or conversion track
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[3] ATL-PHYS-PUB-2022-044 3



https://cds.cern.ch/record/2827111?ln=en

Unified Approach: Graph Neural Network (GNN)

(With Dr. Joe Carmignani, University of Liverpool)

Example graph of 3-prong event
':r TauTracks, 1:b NeutralPFO, 2:g ShotPFO, 3:c ConvTrack, 4:m Cluster

Objects are represented as nodes:
Red for TauTracks (Layer 0)

Blue for NeutralPFOs (Layer 1)
Green for ShotPFOs (Layer 2)
Cyan for ConvTracks (Layer 3)
Magenta for TauClusters (Layer 4)
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Misidentified 7,,q Rejection
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Reduced GNN performed slightly better than RNN
Increasing number of different types of objects
increases performance in misidentified 7,4 rejection
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Misidentified T,.4.is Rejection

10*

10°

102

10

| ¥ GNN Reduced Loose WP
A GNN Reduced Medium WP

— B GNN Reduced Tight WP
= %/ GNN Full Loose WP —ﬁe—
C A GNN Full Medium WP
* ] GNN Full Tight WP
= +D¢+ z ——
E —] A & — v

— il -y — ¥ v
1 E —— 7
— — R N
Eom R S
[ _‘_

+
FQ:+;
v
1 1 Loy | Lo |
10° 10°

Prlhadvis [MeV]

Reduced GNN data shows
the entire pr distribution

lower pr rejection across



Next Steps

Use edge attributes

Training for 1-prong data

Expand to include classifications for decay mode classes
Additional preprocessing on the data

Additional checks on size of graphs for impact on training
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Thank You for Listening
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