# MUCCA Multersciplinary Use Cases for Convergent new Approaches to A explainability

Stefano Giagu Sapienza Università di Roma and INFN Roma

From GNNs to xAI School 2023 SPINE Liverpool and University of Liverpool - September, 21st, 2023







# THE MUCCA PROJECT

- CHIST-ERA IV xAI H2020 EU grant 2.2021-7.2024
- Al explainability methods
- heterogeneous with respect to the types of data, learning tasks, scientific questions
- Multidisciplinary Collaboration that brings together researchers from different fields:
  - high energy physics
  - applied physics in medicine
  - applied physics in neuroscience
  - computer science

• Ultimate goal: quantifying strengths and solving weaknesses of state of the art and novel

• Strategy: study explainability techniques in different use-cases intentionally chosen to be

Three phases:

I - apply xAI techniques

II - identify possibile shortcomings of the techniques and find metrics to gauge explainability & interpretability

III - combine methods and knowledge to develop general procedures and engineering pipelines for xAI







# **MUCCA CONSORTIUM**

### Istituto Nazionale Fisica Nucleare (IT) Rome group

Fundamental research with cutting edge technologies and instruments, applications in several fields (HEP, medicine imaging/diagnosis/prognosis/therapy)

Sapienza University of Rome (IT) Departments of Physics, Physiology, and Information Engineering

HEP: data-analysis, detectors, simulation; AI: ML/DL methods in basic/applied research and industry, intelligent signal processing; Neurosciences: brain encoding of complex behaviours, ML in electrophysiology, multi-scale modelling approaches

### Medlea S.r.I.s (IT)

high tech startup, with an established track record in medical image analysis and high-performance simulation and capabilities of developing and deploying industry-standard IVITIE software solutions

project overarches multiple disciplines putting together world-experts from the respective fields

### University of Sofia St.KI.Ohridski (BG) **Faculty of Physics**

extended expertise in detector development, firmware, experiment software in HEP



### **Polytechnic University of Bucharest (RO)** Department of Hydraulics, Hydraulic Equipment and **Environmental Engineering**

Complex Fluids and Microfluidics expertise: mucus/saliva rheology, reconstruction and simulation of respiratory airways, Al applications for airflow predictions in respiratory conducts



### **University of Liverpool (UK) Department of Physics**

physics data analysis at hadron colliders experiments, simulation, ML and DL methods in HEP

### Istituto Superiore di Sanità (IT)

expertise in neural networks modeling, cortical network dynamics, theory inspired data analysis











# **MUCCA's PEOPLE**

- <u>Bucharest Poli.</u>: C. Balan, D. Broboana, E. Chiriac, E. Magos, C. Patrascu, N. Tanase + students
- INFN: G. Bardella, A. Ciardiello (now Sapienza), T. Torda, C. Voena
- ISS: P. Del Giudice<sup>†</sup>, G. Gigante, M. Mattia + students
- Liverpool Univ.: J. Carmignani, M. D'Onofrio, C. Sebastiani + students
- MedLea srls: S. Melchionna, M. Pratim Borthakur
- <u>Sapienza Univ.</u>: S. Ferraina, S. Giagu (MUCCA PIs), L. Rambelli (now Genova), S. Scardapane, A. Uncini + several students
- Sophia Univ.: V. Kozhuharov, G. Georgiev + students



### **MUCCA WORK PLAN**

Scientific outputs Social impact



Samples and xAI-tools exchange Management and communication exchange



### **inter-connected Work Packages**

### PADME

### WP2: HEP detectors

Application of AI-methods to calorimeter detectors (PADME). Provide simulation of electromagnetic showers, benchmarking and tools for xAI. Deliverables: samples and tools for xAI methods, reports.

### WP3: HEP real-time systems

Develop AI-based real-time selection algorithms for FPGAs at ATLAS. Use xAI methods for to understand complex systems. Deliverables: tools to transfer knowledge for xAI methods in real-time applications, publication.

### WP7: xAI-Tools

Survey of all available xAI methods relevant for use-cases; develop xAI usage pipelines; analysis of results. Deliverables: document xAI procedures and engineering pipelines for general use. Kaggle challenge for exploitation.

### WP4: Medical imaging

Develop xAI pipeline to segmentation of brains in magnetic resonance imaging. Use publicly available databases for xAI developments, focusing on explainability of training strategy. Deliverables: xAl algorithms and stability evaluation.

### WP5: Functional Imaging

Test xAI methodology in respiratory system. Analyse complex systems (passage of air and mucus, expected nonlinear responses) to derive model and test xAI. Deliverables: prototype of xAI algorithm implementation, assessment of produced predictions.







# PROJECT TIME LINE

|                                                                                        | Year 1 |    | Year 1 |    |    | Year2 |    |    | Year3 |    |    |    |   |
|----------------------------------------------------------------------------------------|--------|----|--------|----|----|-------|----|----|-------|----|----|----|---|
| Description                                                                            | Q1     | Q2 | Q3     | Q4 | Q1 | Q2    | Q3 | Q4 | Q1    | Q2 | Q3 | Q4 | C |
| WP0 Project management, coordination                                                   |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T0.1 Project management and coordination                                               |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T0.2 Coordination of the periodic technical and financial reporting                    |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T0.3 Planning of project meetings                                                      |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T0.4 Networking and participation in public conferences                                |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T0.5 Creation of a dissemination and communication plan                                |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T0.6 Plan for exploitation of project results                                          |        |    |        |    |    |       |    |    |       |    |    |    |   |
| WP1 HEP-1                                                                              | _      | _  |        |    |    |       |    |    |       |    |    |    |   |
| T1.1 HEP1-SUSY                                                                         |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T1.2 HEP1-DARK                                                                         |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T1.3 HEP1-BENCH                                                                        |        |    |        |    |    |       |    |    |       |    |    |    |   |
| WP2 HEP-2                                                                              |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T2.1 Collection of experimental data                                                   |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T2.2 Simulation of electromagnetic showers<br>T2.3 Reconstruction of charges and times |        |    |        |    |    |       |    |    |       |    |    |    |   |
|                                                                                        |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T2.4 Shower reconstruction                                                             |        |    |        |    |    |       |    |    |       |    |    |    |   |
| WP3 HEP-3                                                                              |        | _  |        |    |    |       |    |    |       | _  |    |    |   |
| T3.1 Preparation of the dataset                                                        |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T3.2 Implementation of baseline AI models                                              |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T3.3 Syntesis of the baseline model in VHDL                                            |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T3.4 Deployment of xAI methods                                                         |        |    |        |    |    |       |    |    |       |    |    |    |   |
| T3.5 Dissemination and exploitation of results                                         |        |    |        |    |    |       |    |    |       |    |    |    |   |

|    | Y4 |
|----|----|
| 21 | Q2 |
|    |    |

### official starting date 1.2.2021 project ends 7.2024

|   |                                                                                | _  | _      | _  |    | _  | _   | _   |     | _  |     | _   |
|---|--------------------------------------------------------------------------------|----|--------|----|----|----|-----|-----|-----|----|-----|-----|
|   |                                                                                |    | Year 1 |    |    |    | Yea | ar2 | ır2 |    | Yea | ar3 |
|   | Description                                                                    | Q1 | Q2     | Q3 | Q4 | Q1 | Q2  | Q3  | Q4  | Q1 | Q2  | Q   |
|   | WP4 MED-1                                                                      |    |        |    |    |    |     |     |     |    |     |     |
|   | T4.1 Selection of AI algorithms                                                |    |        |    |    |    |     |     |     |    |     |     |
|   | T4.2 Application of state-of-the-art explainability algorithms                 |    |        |    |    |    |     |     |     |    |     |     |
| 1 | T4.3 Test of new xAI algorithms                                                |    |        |    |    |    |     |     |     |    |     |     |
| 1 | T4.4 Stability of xAI algorithms                                               |    |        |    |    |    |     |     |     |    |     |     |
|   | WP5 MED-2                                                                      |    |        |    |    |    |     |     |     |    |     |     |
|   | T 5.1 Reconstruction on tomographic scans                                      |    |        |    |    |    |     |     |     |    |     |     |
| 1 | T5.2 Experiments and validation on air-mucus in idealized geometries           |    |        |    |    |    |     |     |     |    |     |     |
| 1 | T5.3 Experiments and validation on air-mucus in respiratory geometries         |    |        |    |    |    |     |     |     |    |     |     |
| 1 | T5.4 Test of xAI on simulation results                                         |    |        |    |    |    |     |     |     |    |     |     |
|   | WP6 NS-1                                                                       |    |        |    |    |    |     |     |     |    |     |     |
|   | T6.1 Uncover task-relevant neural spatio-temporal pattterns of neural activity |    |        |    |    |    |     |     |     |    |     |     |
|   | T6.2 xAI-assisted selection of neural dynamic models                           |    |        |    |    |    |     |     |     |    |     |     |
| 1 | WP7 XAI-TOOLS                                                                  |    |        |    |    |    |     |     |     |    |     |     |
| 1 | T7.1 xAI methods survey                                                        |    |        |    |    |    |     |     |     |    |     |     |
|   | T7.2 xAI tools delivery to the use cases                                       |    |        |    |    |    |     |     |     |    |     |     |
|   | T7.3 Engineering pipelines for general xAI applications and documentation      |    |        |    |    |    |     |     |     |    |     |     |



## MUCCA: SUMMARY AND EXPECTED IMPACT

- Status of the project: some delay wrt the original plans due to Covid19 restrictions and delay in obtaining funding from one of the funding agencies (Italy MUR), nevertheless:
  - successfully implemented appropriate AI algorithms for all the use cases
  - performed an extensive survey and analysis of state-of-the art xAI methods and developed new ones, identified the most suitable ones to be used for the next phase of the project
- **Expected Results:** knowledge base and xAI tools (documentation and procedures/engineering) pipelines)

- Multiple level impact:
- 1. enable users to better understand AI models and diagnosis limitation using xAI 2. systematic understanding of which xAI methods better adapts to specific applications 3. skill development and training for young researcher



