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Context

Diagnostic tools:

Morphological: Imaging (CT scans and Rx)

Functional: Spirometry 

Lungs diseases:

Respiratory diseases hit 10% of population

They are degenerative, largely misdiagnosed or undiagnosed (~30%)

Early diagnosis and prognosis case save lives

Anatomy:

Airways (trachea, bronchi, bronchioles) with 22 generations of bifurcations (222 branches)

Airways are embedded in a tissue (parenchyma) that is filled with alveoli

Made of compartments/regions (lobes)

Lungs function like a oscillatory pump and internal resistances make the whole difference



Systemic 
failures

Airways:

● Focal or multifocal blockages

● Effusions / edema / mucus

● Inflammations

Fibrosis:

● Low compliance

● Gas diffusion / air trapping

● Inflammations back to airways

Asthma, COPD, BOS, etc.

pneumonia, covid, IPF, RAS, etc.

From dyspnea to death



Goals
• Develop an integrated approach for 3D reconstruction from medical images to perform 

simulation & experiments on respiratory tracts (airways)

• Assess airflow and air+mucus dynamics in respiratory tracts: Newtonian and non-Newtonian 
rheology

• Validate simulation results versus idealized and real data from patients geometries

Compare with experimental data from Bucharest 

• Reach a high level of automation to handle several geometries (patients)

• Feed large dataset to AI to reproduce flow patterns automatically and assess causal relations

MedLea contribution:

• WeResp: medical images reconstruction

• Moebius: multiphysics simulator in 
complex geometries

• AI for functional analysis



Roadmap Functional Biomechanics
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Purpose: xAI + 
high-performance 
simulation + experiments 
to diagnose the impact of 
mucus excess in 
patient-specific respiratory 
health with anatomies 
acquired from tomographic 
scans.

Non-Linear 
Response



Reconstruction of radiological images

Reconstruct lung tracts automatically 

Annotations and metrology

Optimized workflow

1. CT-derived airways. Focus on airways, not 
parenchyma

2. Reconstruct airways explicitly up to CT resolution 
(~1 mm)

3. Complement with synthetic airways obeying 
Murray’s law over generations (self-similarity)

MedLea
DigiScan ®



Predicting flows
Goals

● predict flow distribution at variable Reynolds

● breakdown of 22 generations in bifurcating bricks (1 parent, 2 daughters)

● geometry: from dense to downsampled graphs

● the problem of equivariance (roto-translational symmetries SE3-group)

● Ensure vectors/tensors invariance (eg spherical harmonics basis set)
● Conservations (via Voronoi volumes)

Features

● Flow velocity, pressure, stress tensor

● Minimum distance from walls (to highlight near-wall velocity gradients)

● Maximum inscribed sphere (compress geometrical information and Reynolds proxy)



Pfaff et al. arXiv 2022

Propagative approach

Generated a system of 3D synthetic pipes obeying 
Murray’s self-similarity for lengths/calibers

Randomly chosen angles

Geometrical defects

MeshGraphNet as a 
“propagator” for 
large timesteps

S(t+1) = S(t) + P(t)



Model geometries

Different approach: develop an AI 
model able to describe air propagation, 
starting from simple geometries.

Then we can use a CFD solver on the 
idealized domain, producing large 
amounts of data

~100k voxel grids, delta_t ~10e-5 s

CFD simulation



Data production

Several simulations are needed to train our model: Coarse graining both in space and time. 
• Uniform random sampling of 1% of nodes 
• We retained only one every 20 simulator steps
Information stored on nodes: spatial coordinates (fixed), pressure and velocity components

Extracted probes (point cloud)
Velocity field vs time

time



Data production

• Interaction among points modeled as a graph
• Connectivity is produced using a radius nearest neighbours (RNN) 

algorithm
Dataset production
• We produced 1000 simulations of 500 steps each.
• Every simulation has it own slightly different geometry and unique 

point cloud. All geometries have one bifurcation
• Every 100 simulations, the inlet velocity changes (+- 20%)



Task identification

One step propagator:
1.Input state: P, V at time t
2.Output state: P, V at time t+∆t

With window W=1, a simulation of N time 
frames becomes a set of N-1 pairs

Input Ground truth Prediction

 2Google Deepmind: Learning to Simulate Complex Physics with Graph Networks (2020)
                                 Learning mesh-based simulation with graph networks. ICLR (2021)  1, Pfaff et al.  ICLR 2021

Model design1



Multiphase Case

Multiphase Color-LBM scheme

Viscoelastic and multiphase stress tensor are additive components

Stable simulations over complex geometries

Resulting in one set of populations per specie, therefore

Workload for air-mucus is x100 than for pure air

Multiphase non-elastic response validated under 
microfluidics settings

Dripping/slug regimes correctly identified

Addition of non-disjoining pressure effects available

Full dynamic response to be validated vs experiments:

● Open flow (1:4 contraction)

● Confinement (branched tubes)



ViscoElasticity (effective single-phase)

Tensorial model: 9 components for polymeric specie + solvent

Oldroyd-B model / Other visco-elastic models (FENE)

Fully parallelized with CUDA for GPUs

Workload is x10 than for pure air 

The goal is to use GNN to predict viscoelastic dynamics
Currently under scrutiny for 1:4 
contraction



1. Final model from 3DSlicer; 2. 
The trachea model in Blender 
interface; 
3. Removed unwanted segments; 4. 
Final solid 3D architecture of the 
trachea and main bronchi (3D 
printing); 6. 3D geometry imported 
in ANSYS Fluent & Moebius; 7. 
Steady/unsteady simulations; 8. 
Steady/unsteady path-lines

From CT scan to 3D model: step-by-step 

Air-Mucus transport in tracheal model

Experimental
setup

Direct visualization of air-mucus flow in the tracheal bifurcation

UPB REOROM
Laboratory
Bucharest

Corneliu Balan



Requests:

• Isotropy ⇒ adjacency must be dense enough

• Steady-state solution ⇒ sufficient for the purpose
      or
• Propagator ⇒ general method for time dependence

• Causality: flow from inlet → outlet + irreversibility

• Material properties (relative concentrations) + injection rate as 
controllable parameters

MeshGraphNet suffers from low 
resolution as “sensing” confinement 
requires too many nodes

Propagator mode from the original paper 
is unneeded (at least for pure-air flow)

Pruning the simulation graph



One step prediction visualized



Autoregressive test

The model fails in autoregressive mode 
It accumulates errors and the prediction 
diverges! Reasons:
● mass/momentum leakage
● non equivariant (SE3 group)

Mean (across nodes) pressure (Pa) for one trajectory



Steady state prediction
Goal: direct prediction of steady-state flow fields given the geometry

How: develop a model which extracts geometrical features (e.g. spatial 

coordinates) and uses them to predict physical features (e.g. P,V)

A different architecture is needed: DGCNN (Dynamic-Graph CNN)

Used for classification/part segmentation on point clouds

Wang et al. arXiv 2018

DGCNN layer is called EdgeConv



Regression task on 2D domains 
already attempted:

E.g. Harsch et al. ICLR 2021, used DGCNN 
on a dataset composed of 2D channel flows 
with random objects in them, and one dataset 
of airfols embedded in a mesh



The bottom-up approach: 

● Why flow distributes unequally? Why a certain region is un-ventilated ? 
● Regional plugs along paths: map out the complex landscape for ventilation
● Given the regional fluxes, is air path quantifiable on end-points and in 

tissues ?
● Provide the analogue of Dijkstra’s method, backtrack effective and/or 

failing ventilatory paths

Which xAI best fits (saliency, TRACIN, occlusion, topological, …) ?

xAI to diagnose How a doctor decides:

● Direct Diagnosis

○ observe and detect the important blockages

● Diagnosis by Exclusion

○ exclude any other diseases and formulate a diagnosis



Dealing with
large graphs

Data production:

1. 3D simulations for small bricks

2. skeletonization to compress information: velocity, pressure, MIS

3. exploit self-similarity

4. all relevant quantities become scalars (equivariance is built-in)

AI prediction

xAI diagnosis

1. de-skeletonize for local details

2. calibrate / validate

3. re-model



Thank you

… and …

we are hiring!

www.medlea-tech.com

http://www.medlea-tech.com


Generalization test

Generalization test on different inlet velocities
• Held out test velocities: v_1, v_10
• Model is trained on simulations in 

groups from  v_2  to v_9

On the right: plots of the mean (across 
nodes) relative root mean-squared error 
(RMSE) for pressure and velocity module, 
for the 100 trajectories of one test set. 
Darker color represent the mean across the 
100 trajectories.



We are interested in 3D 
domains

Task identification
Steady state predictor
1. Input state: sampled point cloud resembling 

the underlying geometry 
2. Output state: pressure and velocity fields 

and stress tensor components measured in 
the steady state

Dataset production
1. 2000 simulations with fixed inlet velocity
2. Uniform sampling of n=2000 points
3. Physical features are extracted only once, 

when the system has reached the steady 
state: 1 simulation = 1 data point, time is 
no longer relevant

Input

Model

Prediction

t

Ground truth



Preliminary results

Velocity module on one test steady state

truth prediction

m/s



The SimInhale benchmark
(from Cost action MP1404)

Fully reconstructed airways to 4th generation

Benchmark for fluid mechanics and PIV data

Focus on particle deposition



Adding new features: stress components

In the last few months, we also added the 
stress tensor components, to better inform the 
model about velocity gradients.

The model is capable of managing additional features 
without degrading pressure and velocities prediction, but the 
autoregressive goal still requires a lot of work.

We decided to change our task from a physical 
propagator to a steady state predictor

Near-wall physics 
is important!



Lattice Boltzmann Method (kinetic approach)

Nodes on a dense graph with regular adjacency

High-order Isotropy

Collisions + message passing at every micro-step

Same approach for hollow airways & porous tissues

Simulation details

Dissipative and irreversible dynamics (obeying MaxEnt theorem)

Field-particle duality encoded: particle tracking to determine the swarm of pathlines

One control parameter:
Reynolds number = diameter*velocity/viscosity



GNN

Moebius® From
pure air

to
multiphase 

viscoelastic fluid

Pulsatile period >>  viscous timescale ⇒ final state vs 
boundary condition

1:1 mapping between injection rate and flow pattern

Air-mucus creeping dynamics has a slow evolution

Pulsatile dynamics as a sequence of stationary states 
(adiabatic process)

Confined, stationary flow in complex pipes and air-mucus flow

Airflows



GNN

How do we work on graph data?
Graph neural networks
� Used on unstructured data: molecules, social 

networks ecc.
� Based on message passing, a 

generalization of convolution
� Suitable architecture to leverage 
       physical inductive biases:
• Local interactions
• Superposition principle


