Measurement of VH,H→bb Processes at Low and High Transverse Momenta



### **Elisabeth Schopf**

Liverpool HEP Seminar, 22<sup>nd</sup> July 2020





# The Standard Model & The Higgs Boson



- (Most) SM particles have non-zero mass
  - → Higgs field present everywhere in universe
  - Interactions of SM particles with Higgs field generate their masses
  - → New scalar boson associated with field: Higgs boson (H)



- 2012: discovery of new particle consistent with SM Higgs boson → mass ~125 GeV
- m<sub>H</sub> = 125 GeV & SM-particle-Higgs coupling proportional to particle's mass
  - $\rightarrow$  Fixes Higgs boson decay branching ratios

2



# Status of Higgs Boson Measurements

- Most of predicted SM-particle-Higgs interactions probed and many observed
- $\rightarrow$  (so far) All consistent with SM
- BR(H→bb) ≈ 60% → measure H→bb decays as precise as possible to reduce window for beyond SM Higgs decays
- New physics could enter indirectly and modify differential distributions → visible e.g. in high p<sub>T</sub> tails
  - $H \rightarrow bb$  channel has statistical advantage due to large BR

3

## + Our Tool to Study Higgs Bosons: The ATLAS Detector

Inner Detector: charged particles (trajectories and momenta)

Electromagnetic calorimeter: electrons and photons (energies)

Hadron calorimeter: hadrons/jets(=bundles of hadrons from quark hadronisation)

(energies)

Muon system: muons (trajectories and momenta)

ATLAS data set:

LHC Run2 (2015-2018) = 140 fb<sup>-1</sup> at 13 TeV  $\rightarrow$  ~8 million Higgs bosons  $\rightarrow$  Higgs physics is transitioning to precision measurement era

## H→bb Searches and SM Background Processes



- Production of jets abundant in proton-proton collisions
  - Impossible to record all events containing (b-)jets
  - Overwhelming amount of background events
- Target VH production with
   V→leptons decays
  - → Leptons as trigger signature
  - → Suppression of multi-jet events

5

# VH,H→bb Candidate Events



### **b-Jet Flavour Identification** ("b-tagging")

Hadrons containing b-quarks have measureable<sup>(\*)</sup> lifetimes



→Combination of jet kinematics, SV and IP information in multivariate algorithm provides jet flavour ID

(b-jet ID efficiency: ~70%, c-jet rejection eff.: ~90%, light-jet rejection eff.: ~99.7%) Elisabeth Schopf

# VH,H→bb Analyses, Probing Low and High p<sub>T</sub> Signatures

- → Currently low and high  $p_T$  VH,H→bb measurements are stand-alone analyses
- → Low p<sub>T</sub> analysis: long history in ATLAS, published multiple times with partial data sets
- → <u>High  $p_T$  analysis:</u> first VH,H→bb ATLAS analysis explicitly probing high  $p_T$

# VH, H→bb Signatures

■ 3 V boson decay channels targeted: ZH→vvbb ("0 leptons"), WH→tvbb ("1 lepton"), ZH→ttbb ("2 leptons")



**Jargon Alert:** "Lepton" = lepton directly visible in detector = muon or electron

Elisabeth Schopf

22.07.2020

## **Event Selection**

**ZH** $\rightarrow$ *vv***bb** 0 electrons or muons large amount of  $E^{T}_{miss}$  WH→ℓνbb

1 electron or muon

### ZH→ℓℓbb

2 electrons or muons  $m_{\ell\ell}$  consistent with  $m_Z$ 



0,1,2 lepton: **p**<sub>T</sub><sup>V</sup> > **250 GeV** 

≥1 R=1.0 jet (highest p<sub>T</sub> jet = H candidate) Inside R=1.0 jet: reconstruct small R track-based jets for b-tagging

+ more requirements for multijet suppression in 0 lepton and background suppression in merged analysis

0,1 lepton: **E**<sub>T</sub><sup>miss</sup>,**p**<sub>T</sub><sup>W</sup> > 150 GeV 2 lepton: **p**<sub>T</sub><sup>z</sup> > 75 GeV

Exactly **2 b-tagged R=0.4 jets** (more non-b-jets allowed)

### **Background Components** (after event selection)



#### **Sub-dominant**

single top quarks



→ Rely on **Monte Carlo (MC) simulations** to predict background processes distributions and normalisations in analysis phase spaces (few exceptions)

# Analysis Discriminant,

### i.e. extract signal from which distribution?

### Resolved

- Machine learning to design multivariate discriminant that enhances signal-background separation
- 10 to 15 input variables → newly added variables for full Run 2 analysis: 7-10% improvement



# **Analysis Discriminant,**

### i.e. extract signal from which distribution?

### Merged

### R=1.0 jet invariant mass

### $\rightarrow$ "Keeping it simple" for novel analysis in phase space with limited data statistics



Elisabeth Schopf

# **Control Regions (CRs),**

i.e. "support" MC predictions with data by selecting phase space enriched in certain background process

#### Resolved



2 lepton: eµ events (instead of ee,µµ) → top quark background purity >97% → replace top quark MC with CR data (new for full Run 2)

### Merged

 0,1 lepton: require additional bjet outside R=1.0 jet to normalise tt MCs and control shape of discriminant



#### 22.07.2020

# **Systematic Uncertainties**

- Experimental: object reconstruction (resolution, calibration, etc.)
  - Luminosity, electrons, muons, E<sub>T</sub><sup>miss</sup>, jets, b-tagging
- Signal and background modelling:
  - Simulations to fix expected background and signal contribution in data → Uncertainties on normalisation, analysis region acceptance, shape of discriminant for each process
  - $\rightarrow$  Uncertainties determined by comparison with alternative models

# **Systematic Uncertainties**

Experimental: object reconstruction (resolution, calibration, etc.)

- Luminosity, electrons, muons, E<sub>T</sub><sup>miss</sup>, jets, b-tagging
- Signal and background modelling:
  - Simulations to fix expected background and signal contribution in data → Uncertainties on normalisation, analysis region acceptance, shape of discriminant for each process
  - $\rightarrow$  Uncertainties determined by comparison with alternative models

### Resolved

- Machine learning based reweighting to parametrise uncertainties on multivariate discriminant's shape
- → Captures variations on all inputs to multivariate discriminant and correlations



# VH,H→bb Results

- Fit expected distribution of background+signal to data to extract signal significance and signal strength (μ = N<sub>sig.</sub><sup>obs.</sup>/N<sub>sig.</sub><sup>exp.</sup>)
  - Simultaneous fit to multiple analysis regions (with varying background composition and signal contribution)
  - (Most) systematic uncertainties parametrised as degrees of freedom with outer constraints



$$\mu_{VH}^{bb} = 0.72_{-0.36}^{+0.39} = 0.72_{-0.28}^{+0.29} (\text{stat.})_{-0.22}^{+0.26} (\text{syst.}).$$

VH,H $\rightarrow$ bb significance: 2.1  $\sigma$  (expected: 2.7  $\sigma$ )

VZ,Z→bb signal strength extracted as cross check (simultaneously with VH):

 $\mu_{VZ}^{bb} = 0.91^{+0.29}_{-0.23} = 0.91 \pm 0.15 (\text{stat.})^{+0.25}_{-0.17} (\text{syst.})$ 

Resolved analysis has a VZ,Z $\rightarrow$ bb as well as a m<sub>bb</sub> cross check analysis

### Limitations to Analysis Sensitivities Breakdown of uncertainty sources on µ

#### Resolved

 $t\overline{t}$ 

Diboson Multi-jet

Single top quark

MC statistical

| C                                | t - <b>:</b> t     |           | $\sigma_{\mu}$ |       |
|----------------------------------|--------------------|-----------|----------------|-------|
| Source of ur                     | icertainty         | VH        | $  \tilde{WH}$ | ZH    |
| Total                            |                    | 0.177     | 0.260          | 0.240 |
| Statistical                      |                    | 0.115     | 0.182          | 0.171 |
| Systematic                       |                    | 0.134     | 0.186          | 0.168 |
| Statistical u                    | ncertainties       |           |                |       |
| Data statist                     | ical               | 0.108     | 0.171          | 0.157 |
| $t\bar{t}~e\mu$ contro           | l region           | 0.014     | 0.003          | 0.026 |
| Floating nor                     | rmalisations       | 0.034     | 0.061          | 0.045 |
| Experiment                       | al uncertainties   |           |                |       |
| Jets                             |                    | 0.043     | 0.050          | 0.057 |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ |                    | 0.015     | 0.045          | 0.013 |
| Leptons                          |                    | 0.004     | 0.015          | 0.005 |
|                                  | b-jets             | 0.045     | 0.025          | 0.064 |
| b-tagging                        | c-jets             | 0.035     | 0.068          | 0.010 |
|                                  | light-flavour jets | 0.009     | 0.004          | 0.014 |
| Pile-up                          |                    | 0.003     | 0.002          | 0.007 |
| Luminosity                       |                    | 0.016     | 0.016          | 0.016 |
| Theoretical                      | and modelling unce | rtainties |                |       |
| Signal                           |                    | 0.052     | 0.048          | 0.072 |
|                                  |                    |           |                |       |
| Z + jets                         |                    | 0.032     | 0.013          | 0.059 |
| W + iets                         |                    | 0.040     | 0.079          | 0.009 |

0.021

0.019

0.033

0.005

0.031

0.046

0.048

0.033

0.017

0.055

0.029

0.015

0.039

0.005

0.038

#### Resolved: systematically limited

Merged: statistically limited

| Source of un                             | Source of uncertainty |            |  |  |
|------------------------------------------|-----------------------|------------|--|--|
| Total                                    | 0.372                 |            |  |  |
| Statistical                              |                       | 0.283      |  |  |
| Systematic                               |                       | 0.240      |  |  |
| Experimenta                              | l uncertainties       |            |  |  |
| small-R jets                             |                       | 0.038      |  |  |
| large-R jets                             |                       | 0.133      |  |  |
| $E_T^{\text{miss}}$                      |                       | 0.007      |  |  |
| Leptons                                  |                       | 0.010      |  |  |
|                                          | b-jets                | 0.016      |  |  |
| b-tagging                                | c-jets                | 0.011      |  |  |
|                                          | light-flavour jets    | 0.008      |  |  |
|                                          | extrapolation         | 0.004      |  |  |
| Pile-up                                  | I                     | 0.001      |  |  |
| Luminosity                               |                       | 0.013      |  |  |
| Theoretical a                            | and modelling unce    | ertainties |  |  |
| Signal                                   |                       | 0.038      |  |  |
| Backgrounds                              | 5                     | 0.100      |  |  |
| $\hookrightarrow Z + \text{jets}$        |                       | 0.048      |  |  |
| $\hookrightarrow W + \text{jets}$        | 0.058                 |            |  |  |
| $\hookrightarrow t\bar{t}$               | 0.035                 |            |  |  |
| $\hookrightarrow$ Single top             | 0.027                 |            |  |  |
| $\hookrightarrow \operatorname{Diboson}$ | 0.032                 |            |  |  |
| $\hookrightarrow$ Multijet               |                       | 0.009      |  |  |
| MC statistic                             | al                    | 0.092      |  |  |

Merged

## (Simplified) Differential Measurement

Measurement of [cross section \* branching ratio] of WH,H $\rightarrow$ bb and ZH,H $\rightarrow$ bb in discrete bins of  $p_T^V$ 

### Resolved



Measurements have been interpreted as constraints on anomalous couplings (EFT)

Merged

# Summary

- LHC Run 2 provided an excellent data set to measure VH,H→bb processes with ATLAS
- Two analysis strategies deployed to target low and high transverse momentum regimes:
  - "Resolved": 2 well separated b-jets from Higgs decay
    - Analysis improvements increase sensitivity beyond addition of data
    - ZH observation and WH evidence
    - High precision (limited by systematic uncertainties)
  - "Merged": b-jets from Higgs decay merged in single large jet
    - Novel analysis
    - VH,H $\rightarrow$ bb significance: 2.1  $\sigma$
    - Extending reach at high p<sub>T</sub> (limited by statistical uncertainties)

### All measurements in good agreement with SM

#### Resolved VH,H→bb Result:

https://arxiv.org/abs/2007.02873 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/ HIGG-2018-51/ (all plots/tables including auxiliary material)

Merged VH,H→bb Preliminary Result:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ ATLAS-CONF-2020-007/



#### **Detailed Selection (Resolved)** ÷

| Coloction                                                                                 | 0-lepton                                                       | 1-le                                                                                   | pton                                                                              | 2-lepton                                                                                                    |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Selection                                                                                 |                                                                | e sub-channel                                                                          | $\mu$ sub-channel                                                                 |                                                                                                             |  |
| Trigger                                                                                   | $E_{\mathrm{T}}^{\mathrm{miss}}$                               | Single lepton                                                                          | $E_{\mathrm{T}}^{\mathrm{miss}}$                                                  | Single lepton                                                                                               |  |
| Leptons                                                                                   | 0 <i>loose</i> leptons                                         | Exactly 1 tight electron<br>0 additional loose leptons<br>$p_{\rm T} > 27 \text{ GeV}$ | Exactly 1 tight muon<br>0 additional loose leptons<br>$p_{\rm T} > 25 {\rm ~GeV}$ | Exactly 2 loose leptons<br>$p_{\rm T} > 27 \text{ GeV}$<br>Same-flavour<br>Opposite-sign charges $(\mu\mu)$ |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$                                                          | $> 150 { m ~GeV}$                                              | $> 30 { m GeV}$                                                                        | _                                                                                 | _                                                                                                           |  |
| $m_{\ell\ell}$                                                                            | _                                                              | —                                                                                      | —                                                                                 | $81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$                                                           |  |
| Jet $p_{\rm T}$                                                                           |                                                                | > 20 GeV for $ \eta  < 2.5$<br>> 30 GeV for 2.5 < $ \eta  < 4.5$                       |                                                                                   |                                                                                                             |  |
| b-jets                                                                                    |                                                                | Exactly 2 $b$ -tagg                                                                    | ed jets                                                                           |                                                                                                             |  |
| Leading <i>b</i> -tagged jet $p_{\rm T}$                                                  |                                                                | > 45  GeV                                                                              |                                                                                   |                                                                                                             |  |
| Jet categories                                                                            | Exactly 2 / Exactly 3 jets                                     | Exactly $2 / 1$                                                                        | Exactly 2 / $\geq$ 3 jets                                                         |                                                                                                             |  |
| $H_{\mathrm{T}}$                                                                          | > 120  GeV (2  jets), >150  GeV (3  jets)                      |                                                                                        | _                                                                                 |                                                                                                             |  |
| $\min[\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$                    | $> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$ |                                                                                        | _                                                                                 | _                                                                                                           |  |
| $\Delta \phi(ec{E}_{ m T}^{ m miss}, bec{b})$                                             | $> 120^{\circ}$                                                |                                                                                        | _                                                                                 | —                                                                                                           |  |
| $\Delta \phi(\vec{b_1}, \vec{b_2})$                                                       | $< 140^{\circ}$                                                |                                                                                        | _                                                                                 | _                                                                                                           |  |
| $\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$ | $< 90^{\circ}$                                                 |                                                                                        | _                                                                                 | _                                                                                                           |  |
|                                                                                           | _                                                              |                                                                                        | _                                                                                 | $75~{\rm GeV} < p_{\rm T}^V < 150~{\rm GeV}$                                                                |  |
| $p_{\rm T}^{\scriptscriptstyle V}$ regions                                                | $150 \text{ GeV} < p_{\mathrm{T}}^{V} < 250 \text{ GeV}$       | $150 \text{ GeV} < p_T^V$                                                              | $\Gamma_{ m F}^{\prime} < 250~{ m GeV}$                                           | $150 \text{ GeV} < p_{\mathrm{T}}^{V} < 250 \text{ GeV}$                                                    |  |
|                                                                                           | $p_{\mathrm{T}}^{V} > 250 \mathrm{GeV}$                        | $p_{\mathrm{T}}^{V} > 25$                                                              | $50  { m GeV}$                                                                    | $p_{\rm T}^V > 250 { m ~GeV}$                                                                               |  |
| Signal regions                                                                            |                                                                | $\Delta R(\vec{b_1}, \vec{b_2})$ signal s                                              | selection                                                                         |                                                                                                             |  |
| Control regions                                                                           |                                                                | High and low $\Delta R(\vec{b_1}, \vec{b_2})$                                          | (2) side-bands                                                                    |                                                                                                             |  |

22

# + Detailed Selection (Merged)

| Solation                                                                                               | 0 lenter channel                                                                                      | 1 lenten abannel 2 lenteng abannel |                             |                                                    | ang ahannal                       |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|----------------------------------------------------|-----------------------------------|
| Selection                                                                                              | o lepton channel                                                                                      | 1 lepton                           | channel                     | 2 iept                                             |                                   |
|                                                                                                        |                                                                                                       | e sub-channel                      | $\mu$ sub-channel           | e sub-channel                                      | $\mu$ sub-channel                 |
| Trigger                                                                                                | $E_{\mathrm{T}}^{\mathrm{miss}}$                                                                      | Single electron                    | $E_{\rm T}^{\rm miss}$      | Single electron                                    | $E_{\mathrm{T}}^{\mathrm{miss}}$  |
| Leptons                                                                                                | 0 baseline leptons                                                                                    | 1 signal                           | lepton                      | 2 baseline lep                                     | otons among which                 |
|                                                                                                        |                                                                                                       | $p_{\rm T} > 27 { m ~GeV}$         | $p_{\rm T} > 25 {\rm ~GeV}$ | $\geq 1 \ signal \ leg$                            | pton, $p_{\rm T} > 27 {\rm ~GeV}$ |
|                                                                                                        |                                                                                                       | no second ba                       | seline lepton               | both leptons                                       | of the same flavour               |
|                                                                                                        |                                                                                                       |                                    |                             | -                                                  | opposite sign muons               |
| $E_{\mathrm{T}}^{\mathrm{miss}}$                                                                       | $> 250 \mathrm{GeV}$                                                                                  | $> 50 { m GeV}$                    | -                           |                                                    | -                                 |
| $p_{\mathrm{T}}^{V}$                                                                                   | $p_{\rm T}^V > 250 { m ~GeV}$                                                                         |                                    |                             |                                                    |                                   |
| Large- $R$ jets                                                                                        | at least one large-R jet, $p_{\rm T} > 250$ GeV, $ \eta  < 2.0$                                       |                                    |                             |                                                    |                                   |
| Track-jets                                                                                             | at least two track-jets, $p_{\rm T} > 10$ GeV, $ \eta  < 2.5$ , associated to the leading large-R jet |                                    |                             |                                                    |                                   |
| <i>b</i> -jets                                                                                         | leading two track-jets associated to the leading large- $R$ must be b-tagged (MV2c10, 70%)            |                                    |                             |                                                    |                                   |
| $m_{ m J}$                                                                                             | > 50  GeV                                                                                             |                                    |                             |                                                    |                                   |
| $\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},  \mathrm{small-}R  \mathrm{jets})]$            | $> 30^{\circ}$ -                                                                                      |                                    |                             |                                                    |                                   |
| $\Delta \phi (ec{E}_{ m T}^{ m miss}, H_{ m cand})$                                                    | $> 120^{\circ}$                                                                                       | > 120° -                           |                             |                                                    |                                   |
| $\Delta \phi \ (\vec{E}_{\mathrm{T}}^{\mathrm{miss}},  E_{\mathrm{T},  \mathrm{trk}}^{\mathrm{miss}})$ | $< 90^{\circ}$                                                                                        | < 90° -                            |                             |                                                    |                                   |
| $\Delta y(V, H_{	ext{cand}})$                                                                          | - $ \Delta y(V, H_{cand})  < 1.4$                                                                     |                                    |                             |                                                    |                                   |
| $m_{\ell\ell}$                                                                                         | - 66 GeV < $m_{\ell\ell}$ < 116 GeV                                                                   |                                    |                             | $m_{\ell\ell} < 116 \text{ GeV}$                   |                                   |
| Lepton $p_{\rm T}$ imbalance                                                                           | - $(p_{\rm T}^{\ell_1} - p_{\rm T}^{\ell_2})/p_{\rm T}^Z < 0.8$                                       |                                    |                             | $(p_{\mathrm{T}}^{\ell_2})/p_{\mathrm{T}}^Z < 0.8$ |                                   |

|                                  |          | MV       | A Se     | t-up   |
|----------------------------------|----------|----------|----------|--------|
| Variable                         | 0-lepton | 1-lepton | 2-lepton |        |
| $m_{bb}$                         | ×        | ×        | ×        | Poort  |
| $\Delta R(\vec{b_1}, \vec{b_2})$ | ×        | $\times$ | $\times$ | DUUSU  |
| $p_{\mathrm{T}}^{b_1}$           | ×        | ×        | ×        | provid |

 $m_{bb}$  $\Delta R(b)$  $\begin{array}{c} p_{\mathrm{T}}^{b_1} \\ p_{\mathrm{T}}^{b_2} \\ p_{\mathrm{T}}^{V} \\ p_{\mathrm{T}}^{V} \end{array}$  $\times$  $\times$  $\times$  $E_{\rm T}^{\rm miss}$ Х  $\times$  $\Delta \phi(\vec{V}, \vec{bb})$ Х  $\times$ Х New  $MV2(b_1)$  $\times$ Х New MV2 $(b_2)$ Х Х  $|\Delta \eta(\vec{b_1}, \vec{b_2})|$ Х  $m_{\rm eff}$ Х  $\operatorname{\mathsf{New}} p_{\mathrm{T}}^{\mathrm{miss,st}}$ Х  $E_{\rm T}^{\rm miss}$ Х  $\times$  $\min[\Delta\phi(\vec{\ell},\vec{b})]$ Х  $m_{\mathrm{T}}^W$ Х  $|\Delta y(\vec{V}, \vec{bb})|$ Х Х  $m_{\rm top}$  $|\Delta \eta(\vec{V}, \vec{bb})|$ Х  $E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$ Х Х  $m_{\ell\ell}$ New  $\cos \theta(\ell^-, \vec{Z})$ Х Only in 3-jet events  $p_{\mathrm{T}}^{\mathrm{jet_3}}$  $\times$ Х Х  $\times$ Х  $\times$  $m_{bbj}$ 

Boosted decision trees (as provided by TMVA framwork) used as machine learning algorithm → Using gradient boosting instead of adaptive boosting provided additional performance gain



# + Analysis Regions (Resolved)

| _        |                      | 75 GeV< <i>p</i> | < 150 GeV | Categor $150 \text{ GeV} < p$ | ies<br><sup>V</sup> < 250 GeV | $p_{\pi}^{V} > 2$ | 50 GeV |
|----------|----------------------|------------------|-----------|-------------------------------|-------------------------------|-------------------|--------|
| Channel  | Region               | 2-jets           | 3-jets    | 2-jets                        | 3-jets                        | 2-jets            | 3-jets |
|          | Low- $\Delta R$ -CR  | -                | -         | Yields                        | Yield                         | Yield             | Yield  |
| 0-lepton | Signal region        | -                | -         | BDT                           | BDT                           | BDT               | BDT    |
|          | High- $\Delta R$ -CR | -                | -         | Yield                         | Yield                         | Yield             | Yield  |
|          | Low- $\Delta R$ -CR  | -                | _         | Yield                         | Yield                         | Yield             | Yield  |
| 1-lepton | Signal region        | -                | -         | BDT                           | BDT                           | BDT               | BDT    |
|          | High- $\Delta R$ -CR | -                | -         | Yield                         | Yield                         | Yield             | Yield  |
|          | Low- $\Delta R$ -CR  | Yield            | Yield     | Yield                         | Yield                         | Yield             | Yield  |
| 2-lepton | Signal region        | BDT              | BDT       | BDT                           | BDT                           | BDT               | BDT    |
|          | High- $\Delta R$ -CR | Yield            | Yield     | Yield                         | Yield                         | Yield             | Yield  |







# + Analysis Regions (Merged)

|                  |                     |                              | Categ                | gories                          |                     |               |
|------------------|---------------------|------------------------------|----------------------|---------------------------------|---------------------|---------------|
| Channel          | 250 -               | $< p_{\rm T}^V < 400 { m C}$ | ${ m GeV}$           | $p_{\rm T}^V \ge 400 {\rm GeV}$ |                     |               |
|                  | 0 add. b-track-jets |                              | $\geq 1$ add.        | 0 add. <i>b</i> -track-jets     |                     | $\geq 1$ add. |
|                  | 0  add.             | $\geq 1$ add.                | <i>b</i> -track-jets | 0  add.                         | $\geq 1$ add.       | b-track-jets  |
|                  | small- $R$ jets     | small- $R$ jets              |                      | small- $R$ jets                 | small- $R$ jets     |               |
| 0-lepton         | HP SR               | LP SR                        | $\operatorname{CR}$  | HP SR                           | LP SR               | CR            |
| $1	ext{-lepton}$ | HP SR               | LP SR                        | $\mathbf{CR}$        | HP SR                           | LP SR               | CR            |
| 2-lepton         |                     | $\operatorname{SR}$          |                      |                                 | $\operatorname{SR}$ |               |

26

# **Uncertainty Breakdown for STXS Measurement (Resolved)**

| Source of uncortainty   |                    | $\sigma_{\sigma \times B}$ w.r.t. the SM prediction |                                          |                                | Source of uncertainty       |                    | $\sigma_{\sigma \times B}$ w.r.t. the SM prediction                 |                                |
|-------------------------|--------------------|-----------------------------------------------------|------------------------------------------|--------------------------------|-----------------------------|--------------------|---------------------------------------------------------------------|--------------------------------|
| Source of und           | ertamty            | $75 < p_{\rm T}^{Z, t} < 150 { m ~GeV}$             | $150 < p_{\rm T}^{Z, t} < 250 { m ~GeV}$ | $p_{\rm T}^{Z, t} > 250 \ GeV$ | Source of uncertainty       |                    | $150 \text{ GeV} < p_{\mathrm{T}}^{W, \text{ t}} < 250 \text{ GeV}$ | $p_{\rm T}^{W, t} > 250 \ GeV$ |
| Total                   |                    | 0.710                                               | 0.330                                    | 0.330                          | Total                       |                    | 0.502                                                               | 0.311                          |
| Statistical             |                    | 0.501                                               | 0.262                                    | 0.291                          | Statistical                 |                    | 0.320                                                               | 0.263                          |
| Systematic              |                    | 0.503                                               | 0.200                                    | 0.156                          | Systematic                  |                    | 0.386                                                               | 0.166                          |
| Statistical un          | ncertainties       |                                                     |                                          |                                | Statistical u               | ncertainties       |                                                                     |                                |
| Data statistic          | cal                | 0.421                                               | 0.243                                    | 0.284                          | Data statisti               | ical               | 0.298                                                               | 0.252                          |
| $t\bar{t}~e\mu$ control | region             | 0.221                                               | 0.039                                    | 0.023                          | $t\bar{t} \ e\mu \ control$ | l region           | 0.032                                                               | 0.007                          |
| Floating nor            | malisations        | 0.181                                               | 0.095                                    | 0.047                          | Floating nor                | malisations        | 0.157                                                               | 0.050                          |
| Experimenta             | l uncertainties    |                                                     |                                          |                                | Experimenta                 | al uncertainties   |                                                                     |                                |
| Jets                    |                    | 0.266                                               | 0.082                                    | 0.040                          | Jets                        |                    | 0.145                                                               | 0.054                          |
| $E_{\rm T}^{\rm miss}$  |                    | 0.235                                               | 0.027                                    | 0.016                          | $E_{\rm T}^{\rm miss}$      |                    | 0.171                                                               | 0.009                          |
| Leptons                 |                    | 0.027                                               | 0.007                                    | 0.007                          | Leptons                     |                    | 0.019                                                               | 0.018                          |
|                         | b-jets             | 0.176                                               | 0.082                                    | 0.041                          |                             | b-jets             | 0.049                                                               | 0.023                          |
| h to gring              | c-jets             | 0.028                                               | 0.020                                    | 0.006                          | b-tagging                   | c-jets             | 0.109                                                               | 0.060                          |
| 0-tagging               | light-flavour jets | 0.006                                               | 0.013                                    | 0.015                          |                             | light-flavour jets | 0.004                                                               | 0.005                          |
| Pile-up                 |                    | 0.012                                               | 0.016                                    | 0.017                          | Pile-up                     |                    | 0.017                                                               | 0.015                          |
| Luminosity              |                    | 0.012                                               | 0.016                                    | 0.017                          | Luminosity                  |                    | 0.017                                                               | 0.015                          |
| Theoretical a           | and modelling unce | rtainties                                           |                                          |                                | Theoretical a               | and modelling unce | rtainties                                                           |                                |
| Signal                  |                    | 0.110                                               | 0.096                                    | 0.091                          | Signal                      |                    | 0.035                                                               | 0.050                          |
| Z + jets                |                    | 0.271                                               | 0.089                                    | 0.071                          | Z + jets                    |                    | 0.038                                                               | 0.011                          |
| W + jets                |                    | 0.020                                               | 0.019                                    | 0.008                          | W + jets                    |                    | 0.159                                                               | 0.072                          |
| $t\overline{t}$         |                    | 0.108                                               | 0.036                                    | 0.025                          | $t\overline{t}$             |                    | 0.152                                                               | 0.037                          |
| Single top qu           | ıark               | 0.044                                               | 0.015                                    | 0.015                          | Single top qu               | uark               | 0.135                                                               | 0.032                          |
| Diboson                 |                    | 0.073                                               | 0.044                                    | 0.029                          | Diboson                     |                    | 0.040                                                               | 0.034                          |
| Multi-jet               |                    | 0.009                                               | 0.008                                    | 0.005                          | Multi-jet                   |                    | 0.015                                                               | 0.019                          |
| MC statistica           | al                 | 0.168                                               | 0.057                                    | 0.055                          | MC statistic                | al                 | 0.112                                                               | 0.068                          |

27

# + Diboson Cross Check (Resolved)



### Measured µ compatible with SM



28

#### Elisabeth Schopf

### m<sub>bb</sub> Analysis (Resolved)

29

• VH,H $\rightarrow$ bb significance: 5.5  $\sigma$ 

→ 20% decrease in sensitivity w.r.t. MVA







### \* Measured Signal Strength per Analysis Region (Merged)



# + Event Display (Merged)



### **Beyond Standard Model** Interpretation: Anomalous Couplings

■ Consider anomalous VH,H→bb couplings in an extension of the SM Lagrangian (SMEFT approach):

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d} \frac{1}{\Lambda^{d-4}} \left( \sum_{i} c_{i}^{(d)} O_{i}^{(d)} \right)$$
Dimension distance of new physics (set to 1 TeV) Coupling modifiers (c\_{i}=0 in SM)

■ 14 operators affect ZH,H→bb and 7 affect WH,H→bb

- Aim: set limits  $\rightarrow$  Max. size of new physics effects hiding in data
- Not enough d.o.f. to have sensitivity to all 20 modifiers simultaneously → Construct eigenvectors of coupling modifiers

### **Beyond Standard Model Interpretation: Anomalous Couplings**

■ Consider anomalous VH,H→bb couplings in an extension of the SM Lagrangian (SMEFT approach):



Elisabeth Schopf

22.07.2020

34

# **EFT Eigenvector Composition**

#### Resolved

÷

| Wilson coefficient | Eigenvalue          | Eigenvector                                                                                      |
|--------------------|---------------------|--------------------------------------------------------------------------------------------------|
| $c_{E0}$           | 2000                | $0.98 \cdot c_{Hq3}$                                                                             |
| $c_{E1}$           | 38                  | $0.85 \cdot c_{Hu} - 0.39 \cdot c_{Hq1} - 0.27 \cdot c_{Hd}$                                     |
| $c_{E2}$           | 8.3                 | $0.70 \cdot \Delta \mathrm{BR}/\mathrm{BR}_\mathrm{SM} + 0.62 \cdot c_{HW}$                      |
| $c_{E3}$           | 0.2                 | $0.74 \cdot c_{HWB} + 0.53 \cdot c_{Hq1} - 0.32 \cdot c_{HW}$                                    |
| $c_{E4}$           | $6.4 \cdot 10^{-3}$ | $0.65 \cdot c_{HW} - 0.60 \cdot \Delta \mathrm{BR}/\mathrm{BR}_\mathrm{SM} + 0.35 \cdot c_{Hq1}$ |

### + 1D Fits of EFT Operators

#### Resolved



#### → Each operator constrained separately (all other operators set to 0)

Merged



# **p<sub>T</sub><sup>V</sup> Distributions**

#### top row = resolved analysis bottom row = merged analysis



# VH,H→bb Analysis Improvement (Resolved)

