

Fast timing detectors for HEP and medical applications

Nicola Minafra University of Kansas

May 3rd 2024

Outline

- Why timing?
- How timing?
 - Solid State Sensors
 - Front-end electronics
 - Measurement of the arrival time
- Example of Timing Detectors at LHC:
 - CMS MIP Timing Detector
 - TOTEM Timing Detector
- Medical applications of Timing Detectors

Why timing? Pileup suppression

To associate the detected protons to the correct vertex, when there are multiple interaction per bunch crossing (pile-up) it is possible to measure the time difference between the arrival instants.

CMS MIP Timing Detector (MTD)

Timing for vertex association in Central Exclusive Production

 $p + p \rightarrow p \oplus X \oplus p$

When X is a particle $(J_z^{CP} = 0^{++})$ its mass can be measured using the momentum lost by the leading protons, even if X cannot be detected!

$$M_X \sim \sqrt{s\xi_1\xi_2}$$
 with $\xi = \frac{\Delta p}{p}$

Timing Applications outside HEP

Ring of detectors

Simultaneous gamma rays at

180°

Precise triangulation of sources of particle showers

Positron Emission Tomography

Electron-

positron

annihilation

PET

Outline

- Why timing?
- How timing?
 - Solid State Sensors
 - Front-end electronics
 - Measurement of the arrival time
- Example of Timing Detectors at LHC:
 - CMS MIP Timing Detector
 - TOTEM Timing Detector
- Medical applications of Timing Detectors

Measuring the arrival time

The main contributions to the error on the time measurements are jitter and time walk.

7

Solid State detectors

A particle passing through a crystal will create electron-hole pairs that will drift toward the electrodes because of the bias applied using the polarization circuit; the current induced on the readout electrode can be amplified and acquired.

- $i = E_v e v$
- *i* is the instantaneous current received by the given electrode due to a **single electron**'s motion;
- *e* is the charge on the electron;
- **v** is its instantaneous velocity;
- E_v is the component in the direction v of that electric field which would exist at the electron's instantaneous position under the following circumstances: electron removed, given electrode raised to unit potential, all other conductors grounded.

Currents Induced by Electron Motion, S. Ramo

Diamond as a particle detector

MECHANICAL	High strength diamond for
GRADES	precision machining

A ultrapure single crystal diamond is needed to have a charge collection efficiency close to 100%

The metallization process has been optimized over the years to avoid poor collection efficiency and rate dependency of the collected charge.

The generated signal is clean and fast, but small.

<u>10.1016/j.nima.2010.02.113</u> ~100 ps

~90 ps TOTEM, CMS @ CERN

HADES @ GSI 9

Silicon as particle detector

Needs doping to create depleted region

Lower mobility and/or saturation velocity: slower signals Lower resistivity: higher noise

- Lower displacement energy: worse radiation hardness
- Larger dielectric constant: larger capacitance
- Lower band gap: larger noise, larger signal
- Lower density: lower ionization, lower radiation length

	Diamond	Silicon
band gap [eV]	5.48	1.12
intrinsic resistivity [Ω /cm]	> 10 ¹⁵	2.3x10 ⁵
electron mobility [cm ² /V s]	< 4600	1350
hole mobility [cm ² /V s]	< 3400	480
hole lifetime [s]	10 ⁻¹⁰ - 10 ⁻⁶	10 ⁻³
saturation velocity [cm/s]	1.6- 2.6 x10 ⁷	10 ⁷
density [g/cm³]	3.52	2.33
dielectric constant	5.7	11.9
energy to create e-h [eV]	13.1	3.63
energy loss for MIPs [MeV/cm]	4.69	3.21
average pairs created / 1 μm	36	88.9
displacement energy [eV]	37.5 - 47.6	36
Lower better Larger	better	Depends

3D sensors

The free charges generated by the passage of the particles can be collected by electrodes parallel to the trajectory:

- Same energy deposited by the particle
- Faster collection time
- Higher capacitance
- More difficult to produce

Studies and Tests on 4D pixel sensors, A. Lai

Avalanche PhotoDiodes and Silicon Photomultipliers

A "gain layer" can be introduced to multiply the charge produced by the primary ionization

Thermal and shot noise: charge carriers generated because of noise

"With great signal comes great noise"

After pulses: some carriers are trapped and emitted after > 100 ns

Cross-talk: due to photons produced by the avalanche

Cannot be used directly for MIP

Low Gain Avalanche Detectors (LGADs)

LGADs are silicon sensors optimized for timing measurements employing a thin multiplication layer to increase the output signal at the passage of a particle of a factor ~10.

The signal generated at the passage of a MIP by a 50 μm LGAD can be simulated using <u>Weightfield2</u>

arXiv:1608.08681

Timing capabilities of Ultra-Fast Silicon Detector

Drift Potential Weighting Potential Currents and Oscilloscope Electronics	Control				
Interview Image: Second S	Control Dore: Current = 0 at lise = 10.20 ns Run Set Set Potentials Output Field Image: Set potentials Control Image: Set potentials Deprecision Image: Set potentials Control Image: Set potentials Deprecision Image: Set potentials Control Image: Set potentials	r Properties C Si C Diamond C Free ing type C n C p C n C p meione f strips (1.3,5,.); 1 ⊈ ckness(un): [200 ∰ [200 ∰			
Plotting at: On Strips Between Strips 1565 Draw Field; IEyl IEyl Veighting Potential Weighting Field Ew (1/m)	Number of Particles: I	age s[V], Bepletion[V]: 200 + 50 + op Strip C Backplane			
1 3000 0.8 1000 0.6 1000 0.4 2000	Plot Settings Electric IF Draw Electric Field IF or Draw Eurent Absolute Value Scope IF Draw et notion CSR:T Current Settings ISR:T Defield on at[T]: 0 defield	onics ior Cap(pF): 2 호 (60 (0m), Bu(GHz): 2 호 mp(Om), Tr., Imp(sHV/FQ): 50 호 4 호 , r, T_F(rs): 3.5 호 5 호 see, Vh(IW, CFD if C1): 1 주 10 후			
$\begin{bmatrix} 0.2 \\ 0.0 \\ 50 \end{bmatrix} \xrightarrow{1}_{00} \xrightarrow{1}_{0} 1$	Diffusion Diffusion Charge Cloud Dispersion (no Alpha) Temperature[k]: 300 1	>[Ohm], BW, Gain: 50 €2.5 €100 € ise, Vth[mV, CFD if <1]: 2 € 10 €			

The signal is "amplified" by a gain layer inside the sensor itself, but the leading edge is slower and depends on the charge that is collected by the gain layer

Time precision: ~30 ps

Measuring the arrival time

The main contributions to the error on the time measurements are jitter and time walk.

Charge Sensitive Amplifier

C_{CSA}

The output of a Charge Sensitive Amplifier (CSA) is proportional to the charge injected by the sensor.

$$Q_{gen} = \int i_{gen} dt \rightarrow$$
 Good solution for:

Large SNR ٠

 C_{D}

SENSOR

Slow signal •

Simulation of a diamond detector read-out using a ideal Charge Sensitive Amplifier

Broadband amplifier

A Broadband Amplifier (BDA) can take advantage of a fast signal.

F: Noise Factor only contribution from the amplifier

Good solution for *large* and *fast* signals.

Simulated diamond detector read for F \sim 1.5 at T = 300K.

More details: Sec. 4.6 of <u>Development of a timing detector for the TOTEM experiment at the LHC</u>

Amplifier with high input impedance

A different approach that has some advantage of a BDA and some of the CSA is an amplifier with High Input impedance (Himp).

The input impedance has to be selected according to the characteristics of the sensor.

≪R_i

SENSOR

圭

SiGe BJT

٠

The main advantage/disadvantage is that there are no COTS solutions!

The best value of R for timing has to be optimized according to the sensor:

- High for diamonds ($R \sim 100 \; k\Omega$)
- Lower for thick UfSD ($R \sim 10 \text{ k}\Omega$)
- Low for 50 µm UfSD

Measuring the arrival time

The main contributions to the error on the time measurements are jitter and time walk.

Constant Fraction Discriminator

A threshold that is proportional to the amplitude removes the time walk for Gaussian pulses.

 $V_{th} = k_{cfd} V_{max}$

$$t_{cfd} = t_0 - 2\sigma \sqrt{ln(\frac{V_{th}}{V_{max}})} = t_0 - 2\sigma \sqrt{ln(k_{cfd})} = t_0 + const$$

Problem: the threshold is usually crossed **before** the maximum amplitude is reached! FULL WAVEFORM

DIGITIZATION

V(t)

 $V_{\rm max}/V_{\rm th}$

Time over Threshold

A correction to the threshold crossing can be computed using the Time over Threshold.

The ToT depends on the amplitude:

lt

$$t_{tot} = t_{th2} - t_{th1} = t_0 + 2\sigma \sqrt{ln(\frac{V_{th}}{V_{max}})} - \left(t_0 - 2\sigma \sqrt{ln(\frac{V_{th}}{V_{max}})}\right) = 4\sigma \sqrt{ln(\frac{V_{th}}{V_{max}})}$$
It is possible to find a function f of the ToT to remove the dependency on amplitude:

$$f(t_{tot}) = \frac{T_{tot}}{2}$$

$$t_{corr} = t_{th} + f(t_{tot}) = t_0 - 2\sigma \sqrt{ln(\frac{V_{th}}{V_{max}})} + \frac{4\sigma \sqrt{ln(\frac{V_{th}}{V_{max}})}}{2} = t_0$$

$$\sigma_{jitter} \sim \frac{\sigma_V}{dV/dt}$$

Digitization of the signal.... Why?

A sampled signal contains all the information needed for a precise measurement and to debug the system

Advantages of sampling:

- Infinite analysis possibilities (Al...)
- Possible to improve performance off-line
- Digital elaboration (Moore's law)

Cons

• High cost

- Requires computing power
- Usually slow and bulky devices

Digitization of the signal.... How?

After the analog signal is amplified, it is digitized using an Analog to Digital Converter (ADC)

Digitization "without" loss of information

The system can be designed in a way the measurement is limited by the detector and not by the digitizer

1- Nyquist–Shannon sampling theorem

 $f_{SAMPLING} \geq 2 f_{SIGNAL}$

(assuming sinc antialiasing)

Rule of thumb (conservative):

 $f_{SAMPLING} \sim 3 f_{SIGNAL}$

2- Quantization noise

SNR [dB] = (6.02 ENOB) + 1.76

ENOB: effective number of bits

quantization error is uniformly distributed between –1/2 LSB and +1/2 LSB for a sine wave

ENOB 8 bits: SNR ~48 dB (256)

Diamond SNR ~ 28 dB (25) -> quantization is degrading the SNR by ~0.5% LGAD SNR ~ 40 dB (100) -> quantization is degrading the SNR by ~7%

Can we decouple sampling and digitization?

We can use a fast electronics to sample the signal and then a slower electronics to digitized the sampled signal

24

DRS4: Domino Ring Sampler

Wavecatcher & friends...

All samples of one channel can be digitized at once: lower dead time

SAMPIC: a readout chip for fast timing detectors in particle physics and medical imaging

Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC waveform digitizer

Wavecatcher (SAMLONG chip)

2 ch, up to 3.2 GS/s, 500 MHz BW, 12 bits, 1024 sampling cells, conversion time <66 us, 400 mW

SAMPIC

16 ch, up to 10 GS/s, >1 GHz BW, 11 bits, 64 sampling cells, conversion time 0.1 – 1.6 μs, 180 mW

PSEC4

6 ch, up to 15 GS/s, 1.5 GHz BW, 11 bits, 256 sampling cells, conversion time 4 µs, 100 mW

SCA ASIC

8 ch, >5 GS/s, 1 GHz BW, 12 bits, 128 sampling cells, conversion time 4 μ s

Outline

- Why timing?
- How timing?
 - Solid State Sensors
 - Front-end electronics
 - Measurement of the arrival time
- Example of Timing Detectors at LHC:
 - CMS MIP Timing Detector
 - TOTEM Timing Detector
- Medical applications of Timing Detectors

LGADs for the MTD End Caps

Two disks of LGADs (per side) 1.6 < $|\eta| < 3.0$: Average 1.8 hits per track

Designed for $\sigma < 50 \text{ ps}$ per hit

- Pad size: 1.3 x 1.3 mm² ٠
- High fill factor (>85% per layer)
- ~30k sensors of 2x2 cm² •

Disk 1, Face 1

Disk 2 Support Plate

ETROC: CMS ETL ReadOut Chip

The readout chip is bump bonded to the sensor and wedge bonded to the readout board

- ASIC contribution to time precision <40 ps
- Power consumption: <4 mW/ch (80 kW total)
- Trigger rate: Up to 1 MHz

Timing detectors of CMS-TOTEM

NINO Board

Shaper

Preamp

3 stages,

~15-20 SNR

~1.7 ns rise time

Placed inside RP: HV lines optimized

Different sensors are read-out by a trans-impedance preamplifier, then the signal can be digitized using SAMPIC or discriminated and digitized using HPTDC

Digitizer Board

Timing performance of a double layer diamond detector

Single diamond

2 3 AT (ns)

0.09357 ± 0.00224 0.1349 ± 0.0014

 $\begin{array}{l} \sigma_t \sim 80 \text{ ps} \\ \text{After deconvolution} \end{array}$

0-3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2

Double diamond

~50 *ps*

Outline

- Why timing?
- How timing?
 - Solid State Sensors
 - Front-end electronics
 - Measurement of the arrival time
- Example of Timing Detectors at LHC:
 - CMS MIP Timing Detector
 - TOTEM Timing Detector
- Medical applications of Timing Detectors

Particle accelerators for medical applications

A LINAC designed for radiotherapy can be used in different configurations

"Very" High Energy electrons and proton beams and FLASH therapy

Simulations of **axial dose** distributions in a water phantom for different beam geometries and energies.

*Spread Out Bragg Peak

<u>Treatment of a first patient with FLASH-radiotherapy</u> <u>Radiobiological Aspects of FLASH Radiotherapy</u>

Particle accelerators for medical applications

AIC-144: 58 MeV proton cyclotron at the Institute for Nuclear Physics in Krakow

Application of fast silicon detectors to proton therapysoon!

Single Particle counting for accurate dosimetry

1e7

LGAD flux [particles mm⁻² s⁻¹]

Can we improve the performance at high rate? Deep Neural Networks

Supervised Learning: relies on labeled values (truth values)

Unsupervised Learning: focuses on uncovering relationships within data

Autoencoder Neural Network:

An autoencoder can extract the most important features and it does not require supervision

Machine Learning for Analysis of Fast Particle Detector Data for Proton Therapy Application

Can we do more?

Fluctuation of the beam intensity

Online monitoring of SpreadOut Bragg Peak

Energy of the beam can be measured using Time of Flight

Medical accelerators for sensor characterization

The LINAC at St. Luke Hospital was used to characterize sensors in high-rate environment (for future Electron Ion Collider)

Thin LGAD

AC-LGAD

3D Silicon (Trench)

Tests performed Apr 15-19th ... Stay tuned!

Fast timing detectors for HEP and medical applications

Nicola Minafra University of Kansas

May 3rd 2024