

LEVERHULME TRUST _____

The MUonE experiment: a novel way to measure the hadronic contribution to the muon g-2

Riccardo Nunzio Pilato

University of Liverpool

r.pilato@liverpool.ac.uk

Liverpool HEP Seminars, June 28th 2024

- The muon g-2 and the hadronic contribution to the muon anomaly.
- The MUonE experiment.
- Test Run 2023.
- Proposal for MUonE-phase1 in 2025.

Magnetic anomalies

- Particles with spin have an intrinsic magnetic moment: $\vec{\mu} = g \frac{e}{2m} \vec{S}_{g = \text{gyromagnetic ratio}}$
- Dirac's theory (1928): g = 2 for spin-1/2 point-like particles.

Magnetic anomalies

- Particles with spin have an intrinsic magnetic moment: $\vec{\mu} = g \frac{e}{2m} \vec{S}$ g = gyromagnetic ratio
- Dirac's theory (1928): g = 2 for spin-1/2 point-like particles.

• Kush&Foley experiment (1948): hyperfine structure of atomic spectra. Probing electron magnetic anomaly $\rightarrow g_e \neq 2$.

$$u_e = \frac{g_e - 2}{2} = 0.00119 \pm 0.00005$$

• Calculation by Schwinger (1948): the magnetic anomaly is due to interactions with virtual particles.

Store polarized μ^+ in a ring with a uniform dipole magnetic field.

If $g_{\mu} \neq 2$, muons spin precesses around the direction of the magnetic field.

$$\omega_a = a_\mu \frac{eB}{m_\mu}$$

Store polarized μ^+ in a ring with a uniform dipole magnetic field.

If $g_{\mu} \neq 2$, muons spin precesses around the direction of the magnetic field.

$$\omega_a = a_\mu \frac{eB}{m_\mu}$$

anomalous precession frequency

 e^+ emitted preferably in the direction of the muons spin: measure the number of high energy e^+ from the μ^+ decay vs time.

$$N(t) = N_0 e^{-t/\tau} \left[1 + A\cos(\omega_a t + \phi)\right]$$

Phys. Rev. D 103, 072002 4

magnetic field

Store polarized μ^+ in a ring with a uniform dipole magnetic field.

If $g_{\mu} \neq 2$, muons spin precesses around the direction of the magnetic field.

 $\omega_a = a_\mu$

 10^{0}

Store polarized μ^+ in a ring with a uniform dipole magnetic field.

If $g_{\mu} \neq 2$, muons spin precesses around the direction of the magnetic field.

The muon g-2: experimental results

				•			CE	RN	[7.1 ppm] (1979)
		+ ▲ + BNL							[0.63 ppm] (2006)
	FNAL Run-1 FNAL Run-2/3 FNAL Run-1 + Run-2/3								[0.46 ppm] (2021) [0.21 ppm] (2023) [0.20 ppm] (2023)
	Exp. Average								[0.19 ppm] (2023)
15.0	17.5	20.0	22.5 a _µ ×	25.0 10 ⁹ — 11	27.5 65900	30.0	32.5	35.0	

The muon g-2: experimental results

5

The muon g-2: Standard Model calculation

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm HAD}$$

A triumph of perturbative QFT: up to 5 loops calculations!

 $a_{\mu}^{\text{QED}} = 116\ 584\ 71.8931(104) \times 10^{-10}$

2 loops

1 loop

The muon g-2: Standard Model calculation

7

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm HAD}$$

High precision calculations using perturbation theory: up to 2 loops!

 $a_{\mu}^{\text{QED}} = 116\ 584\ 71.8931(104) \times 10^{-10}$ $a_{\mu}^{\text{EW}} = (15.36 \pm 0.10) \times 10^{-10}$

some representative 2 loops diagrams

1 loop

The muon g-2: Standard Model calculation

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm HAD}$$

Cannot be computed using perturbation theory! (involves low-energy QCD)

 $\begin{aligned} a_{\mu}^{\text{QED}} &= 116\ 584\ 71.8931(104) \times 10^{-10} \\ a_{\mu}^{\text{EW}} &= (15.36 \pm 0.10) \times 10^{-10} \\ a_{\mu}^{\text{HLO}} &\sim 690 \times 10^{-10} \\ \Delta a_{\mu}^{\text{HLO}} &\sim 4 \times 10^{-10} \quad \text{(~ 0.6\%)} \end{aligned}$

The leading order hadronic contribution represents the main source of uncertainty for the theoretical prediction.

Huge work to combine all the input data and evaluate the systematic

J/ψ

ψ(2s)

a_{μ}^{HLO} : data-driven dispersive approach

 a_{μ}^{HLO} $= \frac{\alpha^2}{3\pi^2} \int_{m_{\pi_0}^2}^{\infty} ds \frac{K(s)}{s} R(s)$

 $R(s) \propto \sigma(e^+e^- \rightarrow \text{hadrons})$

R(s)

10000

1000

100

Phys. Rev. D 97, 114025 (2018)

experiments.

uncertainties.

Large fluctuations at low energy due to the hadronic resonances;

Merge measurements of different

hadronic channels from different

Inclusive data √s [GeV]

Transition point at 1.937 GeV

Y(1s-6s)

10

a_{μ}^{HLO} : data-driven dispersive approach

$$a_{\mu}^{\text{HLO}} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi_0}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$
$$R(s) \propto \sigma(e^+e^- \rightarrow \text{hadrons})$$
$$K(s) = \int_{0}^{1} dx \frac{x^2(1-x)}{s}$$

$$K(s) = \int_{0}^{\infty} dx \frac{x^{2}(1-x)}{x^{2} + (1-x)s/m_{\mu}^{2}}$$

$$K(s) \sim 1/s$$

The low energy contribution is enhanced by the kernel function

The main contribution comes from the $\pi^+\pi^-$ channel (~75% of the total)

Muon g-2: current status

Comparison between experiment and the latest Standard Model prediction from the g-2 Theory Initiative: > 5σ discrepancy

Why we are not claiming for physics beyond Standard Model?

Muon g-2: current status

Disclaimer on new results after WP20:

- <u>Plot is purely for demonstration purposes</u>. It does not represent an update from the g-2 Theory Initiative.
- Lattice HVP taken from A. Keshavarzi, Lattice 2023 talk.
- Prediction from CMD3: subsitute TI White Paper by CMD3 only for [0.33-1] GeV (see A. Keshavarzi, Lattice 2023).

A clarification of the theoretical prediction is needed.

MUonE: a new data-driven approach to calculate $a_{\mu}^{\ HLO}$

From time-like to space-like

Swap the order of x and s integrations

a

$$a_{\mu}^{\text{HLO}} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi_0}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$
$$K(s) = \int_{0}^{1} dx \frac{x^2(1-x)}{x^2 + (1-x)s/m_{\mu}^2}$$

Input data: *R*(*s*) in the time-like region (*s* > 0)

$$t_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{had}[t(x)]$$
$$t(x) = \frac{x^2 m_{\mu}^2}{x-1} < 0$$

The running of α

- The electromagnetic coupling constant runs as a function of the momentum tranfer, due to vacuum polarization effects.
- Virtual particles act a screening effect between two real interacting particles.

The MUonE experiment

Extraction of $\Delta \alpha_{had}(t)$ from the *shape* of the $\mu e \rightarrow \mu e$ differential cross section

The μ -e elastic scattering

- Angular measurement: extract $\Delta \alpha_{had}(t)$ from the 2D distribution (θ_{μ}, θ_{e}).
- Correlation between θ_{μ} and θ_{e} allows to select elastic events and reject background (main source: $\mu N \rightarrow \mu N e^+e^-$).
- Boosted kinematics: θ_{μ} < 5 mrad, θ_{e} < 32 mrad.

In principle, it's a table-top experiment... if you can wait ~120 years to have competitive results! If you don't want to wait:

 Increase the target thickness (but multiple scattering will break μ-e correlation)

or...

Instrument more stations!

After LS3: full apparatus with 40 stations

Achievable accuracy

40 stations (60 cm Be) + 3 years of data taking : $(~4x10^{12} \text{ events})$ $E_e > 1 \text{ GeV}$ ~0.3% statistical accuracy on $a_{\mu}^{\
m HLO}$

Competitive with the latest theoretical predictions (~0.6% accuracy)

Main challenge: keep systematic accuracy at the same level of the statistical one

Systematic uncertainty of 10 ppm in the signal region

Main systematic effects:

- Longitudinal alignment (<10 μm)
- Knowledge of the beam energy (few MeV)
- Multiple scattering (<1%)
- Angular intrinsic resolution
- Non-uniform detector response 19

$\Delta \alpha_{had}$ parameterization

Inspired from the 1 loop QED contribution of lepton pairs and top quark at t < 0

$$\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3}\frac{M}{t} + \left(\frac{4}{3}\frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6}\right)\frac{2}{\sqrt{1 - \frac{4M}{t}}}\ln\left|\frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}}\right|\right\}$$
2 parameters:
K, M

Dominant behaviour in the MUonE kinematic region:

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$

Extraction of $a_{\mu}{}^{ m HLO}$

Extraction of $\Delta \alpha_{had}(t)$ through a template fit to the 2D (θ_{e}, θ_{u}) distribution:

Extraction of $a_{\mu}{}^{ m HLO}$

Extraction of $\Delta \alpha_{had}(t)$ through a template fit to the 2D (θ_{e}, θ_{u}) distribution:

Extraction of $a_{\mu}{}^{ m HLO}$

Extraction of $\Delta \alpha_{had}(t)$ through a template fit to the 2D (θ_{e}, θ_{u}) distribution:

Systematic effects

Promising strategy:

- Study the main systematics in the normalization region (no sensitivity to $\Delta \alpha_{had}$ (t) here).
- Include residual systematics as nuisance parameters in a combined fit with signal.

Example: ±10% systematic error on the intrinsic resolution

Staged approach towards the full experiment

- 2017: dedicated test beam to study multiple scattering.
- 2018: test beam to study elastic scattering properties and event selection.
- 2021: first joint test CMS-MUonE with a few 2S modules prototypes (parasitic).
- 2022:
 - test with 1 tracking station.
 - test the calorimeter.
- 2023: test with 2 tracking stations + calorimeter.
- 2025: run with a scaled version of the complete apparatus:
 - 3 tracking stations;
 - Calorimeter;
 - Muon ID;
 - Beam Momentum Spectrometer (BMS).

25

6 X [cm]

Location: M2 beamline at CERN

- Location: upstream the COMPASS detector (CERN North Area).
- Low divergence muon beam: $\sigma_{x'} \sim \sigma_{y'} < 1$ mrad.
- Spill duration ~ 5 s. Duty cycle ~ 25%.
- Maximum rate: 50 MHz (~ 2-3x10⁸ μ ⁺/spill).

Tracker: CMS 2S modules

Silicon strip sensors developed for the CMS-Phase2 upgrade. Pre-production started in 2024.

- Two close-by strip sensors reading the same coordinate and read out by the same electronics
- Readout rate: 40 MHz.
- Area: 10×10 cm² (~90 cm² active).
- Digital readout, 90 μm pitch: ~26 μm resolution.
- Thickness: 2 × 320 μm.

Tracking station

• (x, y) layers tilted by 233 mrad:

• (u, v) layers: solve reconstruction ambiguities.

improve hit resolution.

27

Frontend control and readout via Serenity board (developed for the CMS-Phase2 upgrade)

- M2 beam asynchronous to the reference clock.
- Triggerless readout @40MHz.
- Event aggregator on FPGA (+ online event filtering in 2025).
- Further data aggregation on the PC.
- Transmission to EOS into ~1GB files.

Calorimeter

- 5x5 PbWO₄ crystals, used in the CMS ECAL:
 - area: 2.85×2.85 cm²;
 length: 23 cm (~25 X₀).
- Total area: ~14×14 cm².
- Readout: 10x10 mm² APD.
- Integration in the main DAQ @40 MHz achieved at the end of Test Beam 2023.
- ECAL commissioning in high muon rate environment must be completed.

Calorimeter preliminary analysis: synchronization and spatial resolution

- Sub-mm peak resolution in good agreement with simulations.
- Residual background to be further investigated.

- Sharp peak for Δt = 0: very good time synchronization (resolution limited by the 25 ns readout).
- Accidental background ~ 10-3.

31

Test Beam 2023 (3 weeks Aug/Sep)

- 2 tracking stations;
- 1 graphite target (2–3 cm thickness);
- ECAL.
- Achievements:
 - <u>Demonstrated continuous</u> readout @40 MHz.
 - 350 TB raw data recorded to disk:
 - 3 cm (2 cm) target: ~1(2)×10⁸ elastic events;
 - ECAL integrated in the DAQ @40 MHz in the final part of the run.
 - Achieved online tracking on FPGA.

• Test the reconstruction algorithms and event selection.

Work in progress:

- Study the background processes and the main sources of systematic error.
- Demonstration measurement: $\Delta \alpha_{len}(t)$ with O(5%) stat. accuracy.

TB 2023 2S modules synchronization

Compute the fraction of events with Determine the relative timing of a hit in #1, if a hit is found in the DUT. the modules (i.e. ~0.1 ns for #2 and #3).

TB 2023 - tracking performance: efficiency and angular resolution

TB 2023 - vertexing

Simple selection: events with 2 outgoing tracks within geometrical acceptance (0.2 – 32 mrad).

- The target center is shifted by 0.5 cm by changing between 3cm and 2cm target (OK!).
- Vertex resolution: ~0.8 cm. (Slightly worse for 3cm target due to MS).

TB 2023 μ -e elastic scattering event selection

Work in progress:

- Exploit dedicated MC generators to study the backgrounds:
 - Signal generator: exact NLO + approximated NNLO.
 - Pair production generator: tree level.
- Study the main sources of systematic error using tracker data:
 - Angular intrinsic resolution;
 - Beam energy scale.

- MUonE recently submitted a proposal for a phase 1 of the experiment to the SPSC, concerning a small scale version of the final apparatus.
- If approved, MUonE will request 4 weeks of data taking in 2025.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

MUonE Phase 1 Experiment Proposal

April 25, 2024

Proposal for phase 1 of the MUonE Experiment

The MUonE Collaboration

Run 2025: the apparatus

- 3 tracking stations.
- 2 graphite targets (2 cm thickness each).
- ECAL:
 - Full acceptance for interactions in both targets.
 - Provide independent measurements of the process kinematics.

Run 2025: the apparatus

- 3 tracking stations.
- 2 graphite targets (2 cm thickness each).
- ECAL:
 - Full acceptance for interactions in both targets.
 - Provide independent measurements of the process kinematics.

- Muon ID:
 - Iron shield + tracking station.
 - Full PID (in combination with ECAL).

Run 2025: the apparatus

- 3 tracking stations.
- 2 graphite targets (2 cm thickness each).
- ECAL:
 - Full acceptance for interactions in both targets.
 - Provide independent measurements of the process kinematics.

- Muon ID:
 - Iron shield + tracking station.
 - Full PID (in combination with ECAL).
- BMS:
 - Event-by-event p_{μ} measurement: reduce systematics related to the beam energy scale.

BMS (Beam Momentum Spectrometer)

- Bending power: 16 T*m (30 mrad @160 GeV).
- Determine the muon momentum event by event.
- Goal: < 0.5% momentum resolution.
- In 2025, limited by the precise knowledge of the magnetic field.

Muon ID

- Detect potential π^+ contamination in the M2 beam.
- Complete the PID in combination with ECAL.
- Help to distinguish between scattered muons and beam pileup muons.

Baseline solution for 2025

 Aluminum station (already used in the past Test Beams) instrumented with 2S modules.

Alternative solution (mid-longer term)

- Plastic scintillating fibers readout by SiPM.
- O(1mm) spatial resolution;
 <0.5ns timing resolution.
- Same technology could be used as timing detector between BMS and main tracker. 39

Run 2025: goals

- Detector operations:
 - Prove the capability of the DAQ to synchronize all the sub-detectors and operate efficiently in the 4 weeks run.
 - Verify real time data processing in FPGA firmware to reduce the data volume to be stored.
 - Exploit the ECAL full acceptance to get indications in optimizing its design for the final experiment.

Systematic error studies:

- Exploit data from all the sub-detectors to study backgrounds and systematics.
- Study uniformity of tracking efficiency, PID, backgrounds, detector modelization, beam control.
- Demonstrate control of the systematic errors at O(500ppm).

• Physics results:

- Preliminary measurement of $\Delta \alpha_{had}(t)$ with O(20%) statistical accuracy.
- Measure $\Delta \alpha_{lep}(t)$ with a few percent precision, and compare with the measurement currently being performed with 2023 data.

Conclusions

- MUonE aims to provide an independent calculation of a_{μ}^{HLO} , competitive with the latest evaluations.
- 3 weeks Test Run 2023: proof of concept of the experimental proposal. Data analysis ongoing.
- Experiment proposal to be submitted soon to the SPSC, to request for a ~1 month run in 2025 instrumenting more tracking stations: first sensitivity to $\Delta \alpha_{had}(t)$.
- Full apparatus (40 stations) after CERN Long Shutdown 3 to achieve the target precision (~0.3% stat and similar syst).

BACKUP

 160 GeV muon beam on atomic electrons.

 $\sqrt{s} \sim 420 \,\mathrm{MeV}$

 $-0.153 \, {\rm GeV}^2 < t < 0 \, {\rm GeV}^2$

 $\Delta \alpha_{had}(t) \lesssim 10^{-3}$

Test Run Analysis

Online event selection

Select potential elastic events by looking at the number of hits in two consecutive stations:

> • $N_{hits}^{0} \ge 5 \&\&$ • $N_{hits}^{1} \ge 5 \&\&$ • $N_{hits}^{1} - N_{hits}^{0} \ge 3-5$

Reduce the data flow to 1%-2% Can be easily implemented on FPGA.

Beam rate $1-2 \times 10^8 \mu/\text{spill}$ (1 spill = 5 s)

Goal: count the total number of muons per run (input for expected luminosity)

Alignment TB 2023

- Track based iterative procedure:
 2 alignment parameters per module (offset in the measured direction and rotation angle around the beam axis).
- Align the coordinate orthogonal to the measurement direction by measuring the image of module's middle line.

Alignment - TB 2023

Station 0 - Module 2

Station 1 - Module 6

Station 1 - Module 10

Mean

Std Dev

Mean

Std Dev

Mean

Std Dev

0.0865

19.93

x_{Track} - x_{Hit} [µm]

0.009398

x_{Track} - x_{Hit} [µm]

0.04004

x_{Track} - x_{Hit} [µm]

25.39

16.52

x_{Track} - x_{Hit} [μm]

TB 2023 - MC performance: angular resolution of scattered particles

- Compare track reconstruction with MC truth.
- Muon angle: ~40 μrad resolution for small scattering angles.
- Electron angle: stronger impact of MS. Resolution is ~3 mrad for large scattering angles (E_e ~1-2 GeV).

Work in progress: Data / MC comparison.

Expected event yield: ~10⁹ elastic events within acceptance (one order of magnitude larger than 2023)

Systematic error on the angular intrinsic resolution

±10% error on the angular intrinsic resolution.

The need of including systematic effects in the analysis

What if systematic effects are not included in the template fit?

Simplified situation:

- 1 fit parameter (K). $\Delta \alpha_{had}(t) \simeq -\frac{1}{15}Kt$
- L = 5 pb⁻¹.
 ~10⁹ elastic events (~4000 times less than the final statistics)
- Shift in the pseudo-data sample: $\sigma_{Intr} \rightarrow \sigma_{Intr} + 5\%$.

Systematic error on the muon beam energy

Accelerator division provides E_{beam} with O(1%) precision (~ 1 GeV).

This effect can be seen from our data in 1h of data taking per station.

Systematic error on the multiple scattering

Expected precision on the multiple scattering model: ± 1%

G. Abbiendi et al JINST (2020) 15 P01017

Combined fit signal + systematics

- Include residual systematics as nuisance parameters in the fit.
- Simultaneous likelihood fit to K and systematics using the Combine tool.

- K_{ref} = 0.137
- shift MS: +0.5%
- shift intr. res: +5%
- shift E_{beam}: +6 MeV

Selection cuts	Fit results
$\theta_e \leq 32 \mathrm{mrad}$ $\theta_\mu \geq 0.2 \mathrm{mrad}$	$K = 0.133 \pm 0.028$
	$\mu_{\rm MS} = (0.47 \pm 0.03)\%$
	$\mu_{\rm Intr} = (5.02 \pm 0.02)\%$
	$\mu_{\rm E_{\rm Beam}} = (6.5 \pm 0.5) {\rm MeV}$
	$\nu = -0.001 \pm 0.003$

Similar results also for different selection cuts.

Next steps:

- Test the procedure for the MuonE design statistics.
- Improve the modelization of systematic effects.

GEANT4 simulations

Backgrounds

 10°

MESMER • $\mu e^- \rightarrow \mu e^- \gamma$ • $\mu e^- \rightarrow \mu e^- e^+ e^-$

- $\mu N \rightarrow \mu N e^+ e^-$
- $\mu N \rightarrow \mu X$
- $\mu N \rightarrow \mu N \gamma$

GEANT4

New Background MC generator

Main background: e+e- pair production Implemented in MESMER and interfaced with the MUonE detector simulation

Numerical results for $\mu^+ C \rightarrow \mu^+ C e^+ e^-$ (3)

Laser holographic system

Initial state

- Compare holographic images of the same object at different times.
- Fringe pattern is related to deformations of the mechanical structure.

Multiple scattering: results from TB2017

$$f_e(\delta\theta_e^x) = N\left[(1-a)\frac{1}{\sqrt{2\pi}\sigma_G} e^{-\frac{(\delta\theta_e^x - \mu)^2}{2\sigma_G^2}} + a\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\sigma_T\Gamma(\frac{\nu}{2})} \left(1 + \frac{(\delta\theta_e^x - \mu)^2}{\nu\sigma_T^2} \right)^{-\frac{\nu+1}{2}} \right]$$

Alternative method to compute a_{μ}^{HLO} from **MUonE** data

$$a_{\mu}^{\mathrm{HLO}} = a_{\mu}^{\mathrm{HLO (I)}} + a_{\mu}^{\mathrm{HLO (II)}} + a_{\mu}^{\mathrm{HLO (III)}} + a_{\mu}^{\mathrm{HLO (IV)}}$$

Insensitive to the parameterization chosen to fit $\Delta \alpha_{had}(t)$.

