

(Top and) Higgs Physics in ATLAS

Jordy Degens, on behalf of Liverpool ATLAS Group Liverpool HEP Meeting, 2024-05-23

Testing the SM

Top quark

- Heaviest particle in the SM
- Only "bare" quark in the SM
- LHC is a true top factory
- No other running collider able to produce top quarks
- Focus of my PhD thesis

Higgs boson

- Discovered in 2012
- Completed the SM
- Focus of my study here in Liverpool since November 2023

рр

Standard Model Total Production Cross Section Measurements

Liverpool HEP meeting, Jordy Degens

1

Higgs boson physics:

- Many different production lacksquaremechanisms
- Many different decay modes lacksquare
- Allows to study all different \bullet couplings of the Higgs boson
- ~9 million Higgs bosons \bullet produced at ATLAS in run 2

 \bullet

 \bullet

 \bullet

 \bullet

Effective Field Theory

New Physics interactions out of reach for LHC energy

Extend SM Lagrangian with higher order interactions:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^6$$

 Due to interference with SM can measure small deviations of SM processes Allows to search for new physics across different processes in a systematic way

Effective Field Theory in t-channel

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^6$$

- $\mathcal{O}_{\phi Q}^3$ -> cross-section only
- $\mathcal{O}_{qQ}^{3,1}$ -> p_T spectrum
- \mathcal{O}_{tW} -> angular variables
 - Real coefficient (c_{tW})
 - New (chiral) right-handed interaction
 - Imaginary coefficient (c_{itW})
 - Linked to new CP-violating interaction

Create analysis with focus on measuring EFT parameters after reconstruction

EFT sensitivity

- Use top spin axis to create 3-dimensional coordinate system
- Measure angle of lepton in this coordinate system
- Combine with top momentum measurement

23-05-2024

- interactions
- interactions

The Higgs boson

 $\mathcal{L}_{\rm SM} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ $+i\bar{\psi}D\psi$ $+ |D_{\mu}\phi|^2 - \mu^2(\phi^{\dagger}\phi) - \lambda(\phi^{\dagger}\phi)^2$ $+ y_{ij}\psi_i\phi\psi_j + \text{h.c.}$

Higgs boson physics

- Many different production and decay modes
- Allows to measure many different Higgs interactions

Where do we stand?

Higgs couples to Vector bosons

- W/Z couplings both measured
 - Including differential measurements
 - Number of additional jets
 - Momentum spectra

Higgs couples to 3rd generation of fermions

• top/b/ τ couplings all measured

- Including differential measurements
 - Number of additional jets
 - Momentum spectra
- Long term contributions from Liverpool in H->bb final state (Andy, Carl)

What about other generation?

- H-> $\mu\mu$ observed with ATLAS at 2 sigma (Jan)
- Run 3 analysis ongoing

 - ATLAS measurement

What about other generation?

- H->cc observed (expected) limit of $\mu = 26$ (31)
 - Established different H coupling between b and c quarks
- Re-analysis of run 2 (Ting + Andy)
 - Simultaneously measure H->cc and H->bb
 - Improve sensitivity by factor 2-3
 - Aim for paper at ICHEP
 - Poster by Ting
- Start run 3 analysis of h->bb/cc

What about other generation?

- - \bullet

Higgs EFT combination

• Reminder:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^6$$

- 24 different (CP-event) operators effecting Higgs boson physics
- Combine all different measurements in 1 EFT analysis
 - No new physics found
- Next steps:
 - Combination with other measurements
 - Тор
 - Di-higgs

Testing the potential

- Location of minimum well established from single Higgs
- Shape Not explored
 - Is it Mexican hat shaped?
 - Measure Higgs self-coupling modifier $\kappa_{\lambda} = \lambda / \lambda_{SM}$
 - ~2000 times smaller than single Higgs production
 - ~4000 Higgs pairs produced during run-2

HH Decay

Many different decay modes

- HH->4b: Large branching ratio but huge backgrou
- HH->bb $\gamma\gamma$: Low branching ratio but very clean
- HH->bbττ: Moderate branching ratio and relation
 - τ can decay hadronically (67%) leptonically (33

First full run 2 result in HH->bb $\tau\tau$ (Carl, Nikos, Jordan, Matt)

- Main analyzers of the lephad channel
- observed (expected) upper limit from bbtt on $\mu_{HH} = 4.7$ (3.9)
 - Most sensitive channel in combination
 - Included a search for new heavy resonances
- Contributions to final di-Higgs combination
 - Including combined EFT interpretation

		bb	WW	ττ	ZZ
	bb	34%			
und	WW	25%	4.6%		
	ττ	7.3%	2.7%	0.39%	
ively clean 3%)	ZZ	3.1%	1.1%	0.33%	0.069%
	ΥY	0.26%	0.10%	0.028%	0.012%

17

Legacy HH->bb $\tau\tau$ result

ATLAS recently published new HH->bb $\tau\tau$ legacy run 2 result • Observed (expected) upper limit of $\mu_{HH} = 5.9 (3.3)$

- 20% better limit on κ_{λ} in HH->bb $\tau\tau$
- New di-Higgs combination ongoing

Run 2 + Run 3 HH->bb $\tau\tau$ measurement

Liverpool contributions (Bhupesh, Carl, Jordy)

- Software coordinator of the new analysis framework
- Focus will be on HadHad channel
- Investigate top modelling (<u>talk Bhupesh</u>)
- Study new MVA strategy

Flavour tagging Improvements

- ~2x better performance compared to previous tagger (DL1d)
- Ongoing calibration of GN2 tagger (Andy + Nikos)

Tau tagging Improvements

- Training of new tagger also using GNN architecture (Monica, Joe, Nikos, Rob, Mehul, Jordy)
- Similar improvements expected with respect to b-tagging
- More details in <u>Robs 2nd year talk</u>
- Estimated sensitivity:
- Combined (CMS+ATLAS) evidence for HH production by end of run 3

One of main physics results for ATLAS HL-LHC

New tracking detector build in Liverpool: ITk

Search for additional Higgs bosons • Many models predict additional Higgs bosons (SUSY, MSSM, 2HDM) • Combined search for heavy Higgs boson (H) decaying into higgs pair (Nikos):

- - H->hh->bbbb (high mass)
 - H->hh-> $bb\tau\tau$ (medium mass) (Nikos, Carl, Jordan)
 - H->hh->bb $\gamma\gamma$ (low mass)
- Search for di-Higgs production in association with vector boson (Nikos)

• Search for CP-odd Higgs boson decaying to heavy CP-even Higgs boson and a Z (Nikos)

Conclusion

- ATLAS ideal detector to study complete SM
 - Mapping out the complete Higgs/Electroweak/top sector
 - Liverpool involved in many key analysis
- Future data allows to search for even rarest processes
 - Strong involvement from Liverpool both in Analysis and object reconstruction
 - 2nd generation of leptons would verify Higgs mechanism across generation

 - Plans to study even rarer triple-Higgs production to determine full potential

EFT powerful tool to combine many different analysis

- Study on new CP-violating interactions in top sector presented
- Most stringent limits on combined EFT interactions in Higgs physics
- Future combination of many measurements

• Di-Higgs measurement offers unique opportunity to determine shape of Higgs potential

Backup

Testing the SM

- ATLAS can measure all types of interactions
- Top quark
 - Heaviest particle in the SM
 - Only "bare" quark in the SM
 - LHC is a true top factory
 - No other running collider able to produce top quarks
 - Focus of my PhD thesis done at Nikhef
- Higgs boson
 - Discovered in 2012 lacksquare
 - Crucial part in giving particles their mass
 - By studying the Higgs boson we can access the Higgs potential
 - Focus of my study here in liverpool

GGF HH Production

- ~4000 HH pairs produced in Run 2
- $\sigma \sim |\mathbf{B}|^2 + |\mathbf{T}|^2 + 2\text{Re}(\mathbf{B}^*\mathbf{T})$
- ggF: $\sigma = 31 fb$
- Acces to Higgs self-coupling κ_{λ}

t-channel single top

- Top quarks are polarized
- Measure polarization via angular decay distribution
- Measure angle of lepton in coordinate system (x', y', z'):
- Measure new CP violation via $\cos(\theta_{lv})$

C_{tW} and C_{itw} sensitivity on Angles

23-05-2024

 $\cos(\theta_{lz})$

CQQ sensitivity

- Large sensitivity through top p_T	strents 120
 Grows with momentum 	Ш
• Use 2 bins in p_T	100
 Larger/smaller than 80 GeV 	80
	60

ratio

Final observable O(16): EFT sensitivity

 \mathcal{O}_{tW} -> angular variables(real + imaginary),

- $O(16) = (\cos(\theta_y) > 0) + 2(\cos(\theta_x) > 0) + 4(\cos(\theta_z) > 0) + 8(p_T^t)$ > 80 GeV)
- Can measure 3 EFT parameters simultaneously
 - Enhanced sensitivity at high momentum

Trapezoidal requirement:

 $\eta^j < (3\eta^t + 10.5) \cap \eta^j > (3\eta^t - 10.5) \cap \eta^j > (0.25\eta^t + 2.5) \cup \eta^j < (0$

Kinematic Likelihood FIT(KLFIT):

• $\ln(\mathcal{L}) = B(m_{l\nu}|M_W, \Gamma_W) + B(m_{Wb}|M_t, \Gamma_t)$

$$+\sum_{l,b,q,\nu} W(E_{obj}^{meas}|E_{obj})$$

- Use cut on likelihood at -36
 - Selects t-channel events vs background events
 - Selects well reconstructed events
 - Neutrino estimation off for low likelihood events
 - Not using "KLFit-corrected" 4-momentum
- Normalization of t-channel is free parameter
- Main backgrounds:
 - Top pair production
 - W+jets production

t-chan EFT Parameterization

EFT fit after detector simulation

• Parametrize each bin in EFT parameters: $N_{EFT}(c_{tW}, c_{itW}, c_{qQ}) = \begin{bmatrix} 1 & \text{EFT parameters:} \\ x = c_{tW}, c_{itW}, c_{qQ} \end{bmatrix} \cdot c_x + \sum_{x,y = c_{tW}, c_{itW}, c_{qQ}} b_{x,y} \cdot c_x \cdot c_y \end{bmatrix} N_{SM}$

Strong linear (shape) dependence!!

23-05-2024

tt eft Parameterization

- $t\bar{t}$ also depends on c_{tW} and c_{itW} via decay
 - New since previous analysis

23-05-2024

Liverpool HEP meeting, Jordy Degens

33

Pre/Post-fit plots

- Small (pre-fit) deficit in last 4 bins
 - All within uncertainties

Ranking

Pre-fit impact on c_{tw} : $\theta = \hat{\theta} + \Delta \theta \qquad \theta = \hat{\theta} - \Delta \theta$ Post-fit impact on c_{tw}: $\theta = \hat{\theta} + \Delta \hat{\theta} \qquad \theta = \hat{\theta} - \Delta \hat{\theta}$ — Nuis. Param. Pull \mathbf{C}_{qQ} JES flav. comp. t-channel **JET JER EffectiveNP 2** tt Fragm./Hadr. model **JET JER EffectiveNP 10** top mass tt pThard1 JES η Intercal. Mod. MET SoftTrk ResoPerp t-chan. norm. γ (statWcjetsSR bin 8) JET Pileup RhoTopology JES flavour Response γ (statWbjetsSR bin 8) **JET JER EffectiveNP 7** γ (statWbjetsSR bin 9) **JET JER EffectiveNP 4 JET JER EffectiveNP 5** JET JER EffectiveNP 9 BJES_Response

LINEAR FIT

- Fit EFT parameters simultaneously with overall normalization factors for t-channel, $t\overline{t}$ and W+jets
 - EFT parametrization for both t-channel and ttullet

tt SM FIT

- Fit EFT parameters simultaneously with overall normalization factors for tchannel, $t\bar{t}$ and W+jets
 - Quadratic EFT parametrization for both t-channel and *tt*(left)
 - Standard Model *tt*(right)

Conclusion

- EFT fit performed on reconstruction level:
 - Taking into account all systematics
 - With EFT Effects on $t\overline{t}$
 - Taking into account all leading EFT contributions in a correlated way
 - Factor 2-3 more sensitive than previous t-chan ATLAS result for C_{tW} and C_{itW}
 - Smaller sensitivity as t-channel cross-section on C_{qQ} but more model independent
 - Large improvements from p_T dependency and better background rejection(2x better)

CQQ sensitivity

•
$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^6 \longrightarrow M = M_{SM} + 2$$

•
$$N \propto |M|^2 = M_{SM} + \sum_i c_i |M_{Sm}M_i| + \sum_{i} d_{i}$$

• Use reweighting method for EFT:

•
$$W_{new} = \frac{|M^{new}|^2}{|M^{old}|^2} W_{old}$$

- Large sensitivity through top p_T
 - Grows with momentum
- Use 2 bins in p_T
 - Larger/smaller than 80 GeV

 $\sum_{i} \frac{c_i}{\Lambda^2} M_i^6$ $\sum_{i} C_i C_j |M_{ij}|$

Region definition

• Trapez. Requirement defined as:

• $\eta_i < (3\eta_{IEmiss_h} + 10.5) \cap \eta_i > (3\eta_{IEmiss_h} - 10.5) \cap \eta_i > (0.25\eta_{IEmiss_h} + 2.5) \cup \eta_i < (0.25\eta_{IEmiss_h} - 2.5)$							
Preselection region	Signal region	$t\bar{t}$ control region	W+jets control region				
=1 charged tight lepton ($p_T > 30$ GeV and $ \eta < 2.5$)							
Veto secondary low- p_T charged loose leptons ($p_T > 10$ GeV and $ \eta < 2.5$)							
=2 jets (p_T > 30 GeV and $ \eta < 4.5$; $p_T > 35$ GeV within 2.7 < $ \eta < 3.5$)							
$E_{\rm T}^{\rm miss} > 35 {\rm ~GeV}$							
$m_{\rm T}(\ell E_{\rm T}^{\rm miss}) > 60 {\rm GeV}$							
$p_{\mathrm{T}}(\ell) > 50 \left(1 - \frac{\pi - \Delta \phi(j_1, \ell) }{\pi - 1}\right) \mathrm{GeV}$							
=1 <i>b</i> -jet ($ \eta < 2.5; 60\%$ WP)		=2 <i>b</i> -jet ($ \eta < 2.5$; 60%WP)	=1 <i>b</i> -jet ($ \eta < 2.5; 60\%$ WP)				
	$m_{\ell b} < 153 \text{ GeV } \frac{8}{2}$		$m_{\ell b}$ > 153 GeV Or				
$m_{\ell E_{\mathrm{T}}^{\mathrm{miss}}b} \in [120.6, 234.6] \text{ GeV}$			$m_{\ell E_{T}^{\text{miss}}b} \notin [120.6, 234.6] \text{ GeV}$				
trapez. requirement			veto trapez. requirement				
	$m_{j\ell E_{\rm T}^{\rm miss}b}$ > 320 GeV		$m_{j\ell E_{\mathrm{T}}^{\mathrm{miss}}b}$ < 320 GeV				
	$H_{\rm T} > 190 {\rm ~GeV}$		$H_{\rm T}$ < 190 GeV				

Trapezoidal cut

- Greatly reduces backgrounds while keeping signal
 - Optimized on S/B and $S/\sqrt{S+B}$

Liverpool HEP meeting, Jordy Degens

500

400

300

200

100

41

Previous results of polarization fit • Fit both c_{tw} and c_{itw} to unfolded distributions of $cos(\theta_{xl})$ and

- $\cos(\theta_{yl})$
 - $c_{tW} = 0.3 \pm 0.6$
 - $c_{itW} = -0.3 \pm 0.2$

Liverpool HEP meeting, Jordy Degens

42