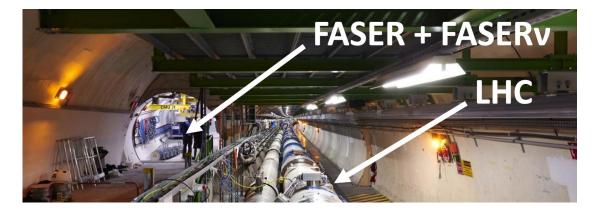
FASER Forward Search Experiment

Monica D'Onofrio, Carl Gwilliam, Lottie Cavanagh, Sinead Eley

24th May 2024

Liverpool HEP Annual Meeting



FASER Location

FASER is a small experiment designed to search for new long-lived particles (LLPs), and to study high energy neutrinos, produced at the ATLAS Interaction Point.

Located 480m downstream of ATLAS, shielded with 100m of rock and concrete.

Lottie Cavanagh - Liverpool HEP Annual Meeting - May 2024

The FASER Collaboration

Lottie Cavanagh - Liverpool HEP Annual Meeting - May 2024

CERN

Physics Motivation

Carl: FASER Physics Coordinator (2022 - Sept 2024)

FASER exploits large LHC collision rate with highly collimated forward production of light particles

Targets new long-lived BSM particles including **dark photons** and **ALPs**

pp \rightarrow LLP, LLP travels ~480m, LLP \rightarrow ee, yy, $\mu\mu$, ...

• Complementarity with GPDs

10-10-Belle-II 10-3 10 LHCb =1/f_y [GeV⁻¹] FASER __LDMX Belle-II 3y_-- w 10-5 LDMX FASER 10-4 Belle-II v+inv SHiP 10⁻⁶ FASER 2 SeaQuest 10-MATHUSLA SeaQues 10⁻⁷ Dark Photon ALP – Photon Dominance 10-7 10-2 10^{-1} 10^{-2} 10⁻¹ m_a [GeV] *m*_{A'} [GeV]

/E_ (×10⁻³⁸ cm²/GeV) energy ranges of 8 0.9 accelerator data ~ 20,000* v_µ ~ 1,200* v oscillated v, measurements 8.0 gu - IceCube v., v. ~ 20* v_ - SK v_x, \overline{v}_{x} [®]0.7 ↓ 0.6 ← OPERA v. E53 v cm²/GeV) DONUT v_e, \overline{v}_e Щ_0.5 b 0.5 DONUT V., V. 0.4E E53 1 0.4 0.4 0⁻³⁸ FASERy FASERv ve spectrum (a.u.) × 0.3 FASERv 0.3E 0.3E v, spectrum (a.u.) spectrum (a.u.) ₩ 0.2 0.2E 0.2E 0.1 0.1 0 10² 10^{3} 10^{2} 10^{3} 10^{3} 10⁴ 10^{5} 10^{2} 10⁴ 10 10° E, (GeV) E. (GeV) E, (GeV) Lottie Cavanagh - Liverpool HEP Annual Meeting - May 2024

- Dedicated FASERv detector on LOS
- First observation of collider **neutrinos**
- Cross-section measurement in unexplored TeV range

* $oldsymbol{v}$ numbers for full Run 3

The FASER Detector

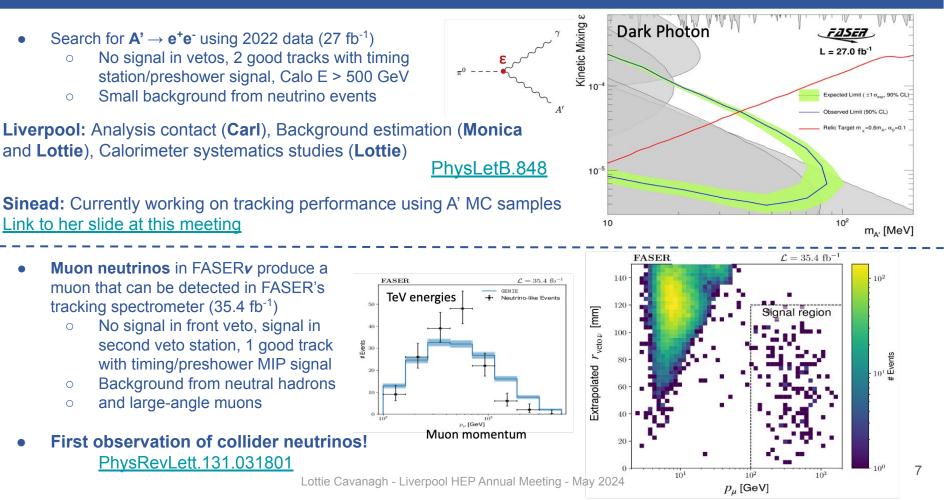
FASER Operations

Davanagh - Liverpool HEP Annual Meeting - May 202

08/19 00:00

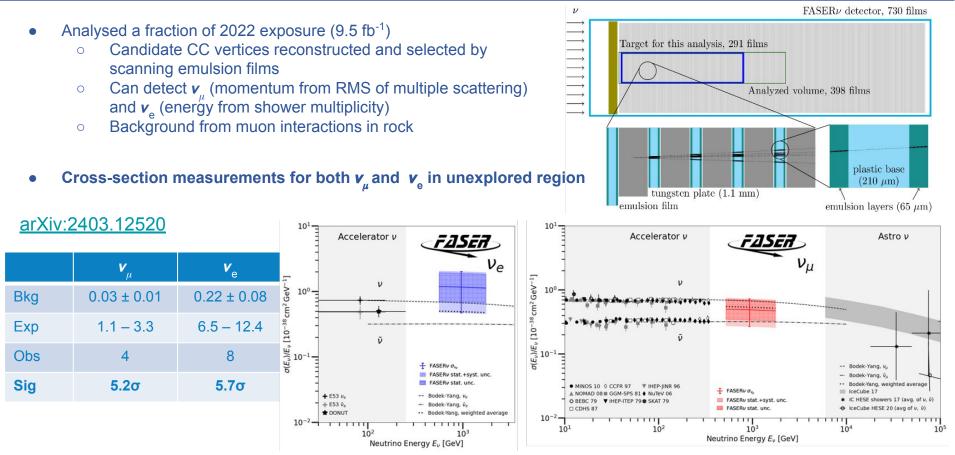
- Physics Rate

08/20 00:00


08/21 00:00

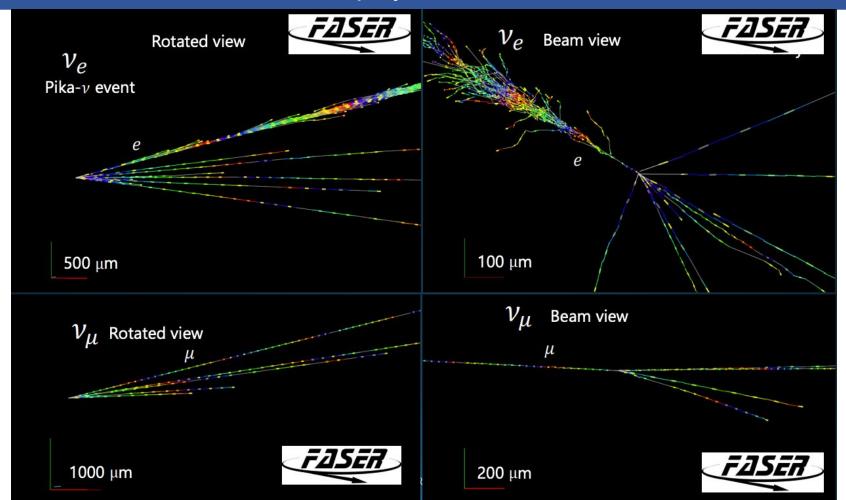
08/22 00:00

08/23 00:00

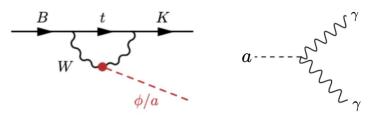

Dark Photons and Muon Neutrinos in FASER

Previous Results

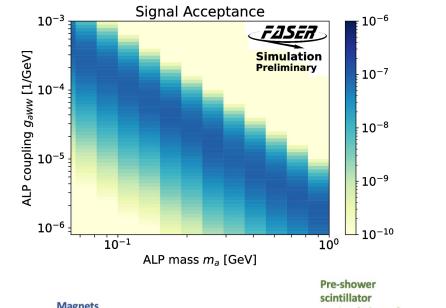
Neutrinos in FASERv (Emulsion Detector)

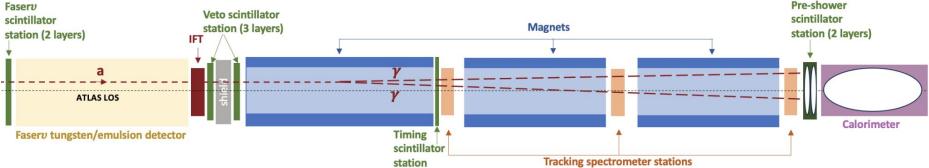

New Results

Lottie Cavanagh - Liverpool HEP Annual Meeting - May 2024


Neutrinos in FASERv Event Displays

New Results




ALPs in FASER

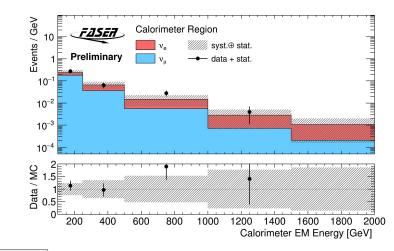
New Results

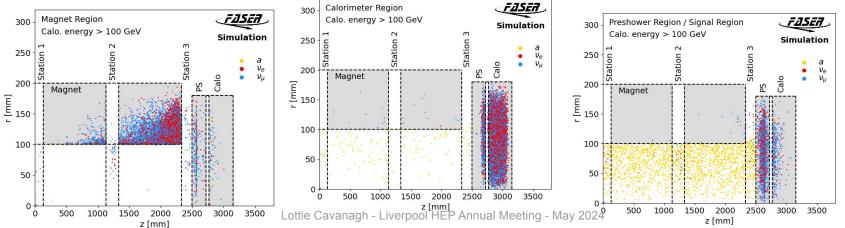
- FASER is sensitive to axion-like particles (ALPs)
 - Coupling to SU(2)L gauge bosons
- Primarily produced in B meson decays in our sensitivity range
- Can decay anywhere in FASER spectrometer
- Decays to 2 high energy photons
 - Cannot be distinguished in our calorimeter

Trigger and Data Quality
Selecting events with calorimeter triggers
Calorimeter timing $(> -5 \text{ ns and } < 10 \text{ ns})$
Baseline Selection
Veto/VetoNu Scintillator to have no signal (< 0.5 MIPs)
Timing Scintillator to have no signal (< 0.5 MIPs)
Signal Region
Preshower Ratio to have EM shower in the Preshower (> 4.5)
Second Preshower Layer to have signal $(> 10 \text{ MIPs})$
Calorimeter to have a large deposit $(> 1.5 \text{ TeV})$

Liverpool-led analysis:

Event selection and signal optimisation (Lottie) ALP signal grid MC generation (Carl) Geometric muon background estimation (Lottie + Monica) Signal systematics (Lottie) Statistical interpretation of results (Lottie)


Neutrino MC Prediction for 57.7 fb ⁻¹		
Light	$0.23^{+0.01}_{-0.11}$ (flux) ± 0.11 (exp.) ± 0.04 (stat.)	
Charm	$0.19^{+0.32}_{-0.09}$ (flux) ± 0.06 (exp.) ± 0.03 (stat.)	
Total	0.42 ± 0.38 (90.6%)	


ALP Background Estimation

- Neutrino background evaluated using MC simulations
- Validated in data control regions defined based on where in FASER neutrinos interact

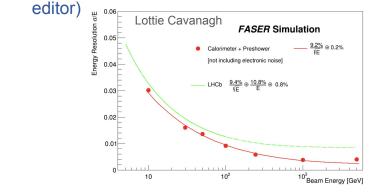
Other sources of (negligible) background considered in this analysis:

- Large angle geometric muons
 - Those not dealt with by veto scintillators
- Neutral hadrons
- Non-collision beam 1 background and cosmics

Systematic Uncertainties

The various sources of systematic uncertainty in this analysis can be defined in 3 categories:

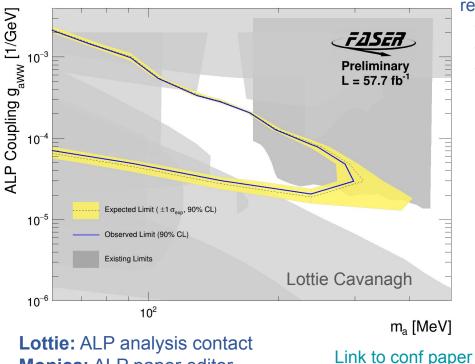
- Theory
 - The uncertainty associated with flux modelling and generator variation
- Experimental
 - The uncertainty on luminosity measurement
 - The uncertainty associated with our preshower and calorimeter cuts
- Statistical uncertainty


The dominant source of uncertainty is the uncertainty derived from the different MC generators

Signal systematics:

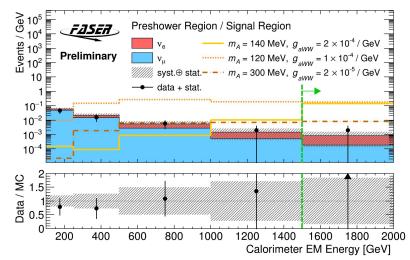
Signal Sample	Flux	Stat.	Luminosity	Calorimeter	Second Preshower Layer	Preshower Ratio
$m_a = 140 { m MeV}$	59.4% 1.8%	10 1 80 2 20	2.2%	3.6%	0.6%	7.9%
$g_{aWW}=2\times 10^{-4}~{\rm GeV^{-1}}$	03.470	1.070	2.270	5.070	0.070	1.370
$m_a = 120 { m MeV}$	57 3%	3 5%	2.2%	16.3%	0.6%	6.9%
$g_{aWW} = 10^{-4} \text{ GeV}^{-1}$	57.3% 3.5%		2.270	10.370	0.070	0.970
$m_a = 300 { m MeV}$	58 0%	2.0%	2.2%	15.8%	0.6%	8.4%
$g_{aWW} = 2 \times 10^{-5} \text{ GeV}^{-1}$	58.0% 2.9%		2.270	10.070	0.070	0.470

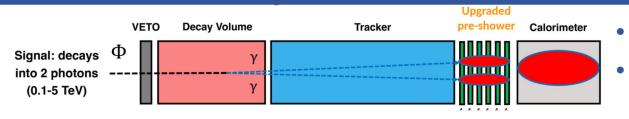
Experimental uncertainties evaluated using test beam data/MC


- From 2021 calorimeter test beam
- Test beam paper in progress (Lottie: paper editor)

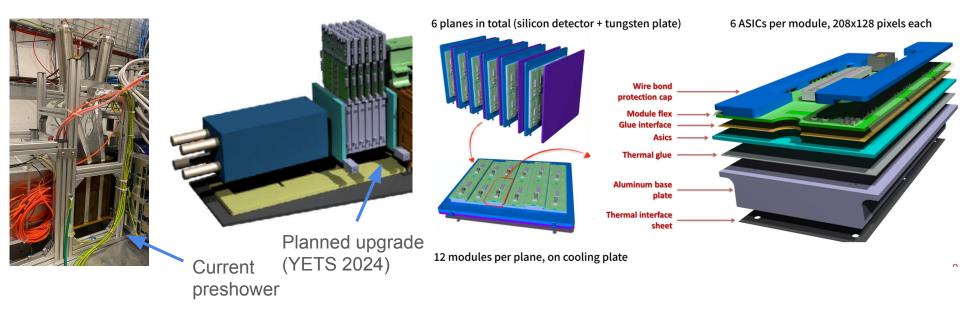
ALP Unblinded Results

New Results

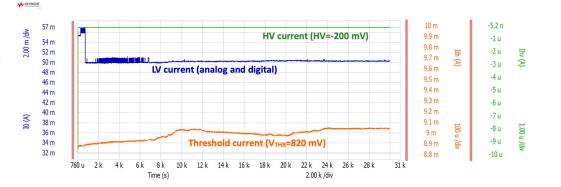

Observed limit:

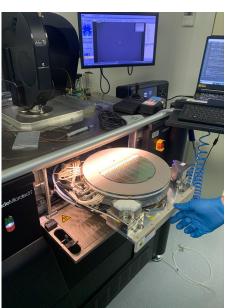

Monica: ALP paper editor Carl: Signal generation and validation In 57.7 fb⁻¹ of data we saw **1 event** in our unblinded signal region

- Compared to expected background of 0.42 ± 0.38 events
- Shows preshower deposits consistent with an EM shower
- Calorimeter energy of **1.6 TeV**


Unblinded Signal Region:

FASER's Preshower Upgrade

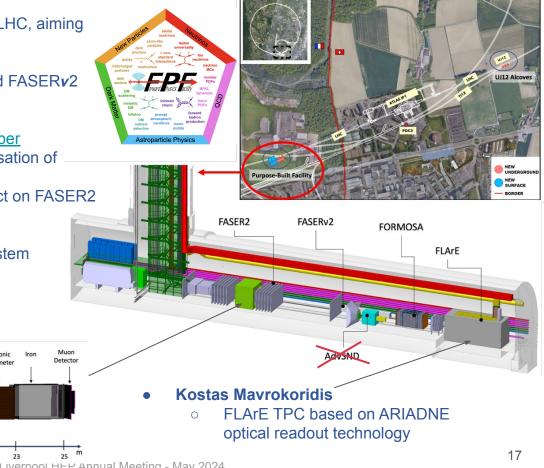


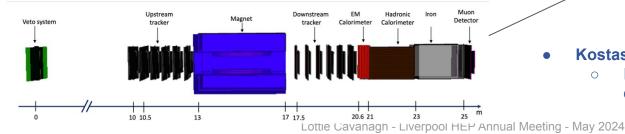

- Resolve diphoton events by upgrading pre-shower with high X-Y granularity
- Improve sensitivity and background suppression in ALPs and other LLP searches



FASER's Preshower Upgrade (2)

- **Liverpool**: involvement in hardware and chip testing since September 2023
 - **Lottie:** Recently returned from a month at CERN/University of Geneva cleanroom

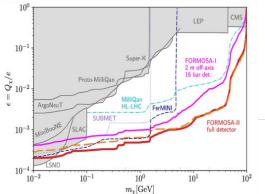


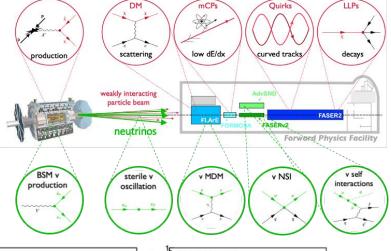

- Production chip characterisation at probe station:
 - Electrical tests: HV, LV, threshold tests
 - ASIC masking and pixel matrix readout
 - Testing and debugging firmware
 - Gain measurements

Forward Physics Facility and FASER2

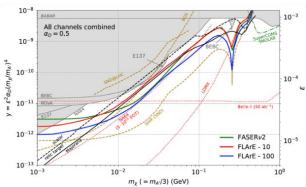
- Proposed dedicated forward-physics facility at HL-LHC, aiming for LOI in early 2025
 - New ~65 m long cavern, 620 m from ATLAS
- $5 \rightarrow 4$ dedicated experiments including FASER2 and FASERv2
- IoP half-day meeting hosted by Liverpool last October
 - Monica and Carl: Feasibility studies, optimisation of tracker layout
 - Sinead completed her MPHYS project on FASER2
 - Eva Vilella-Figueraz
 - Contributions to FASER2 tracking system

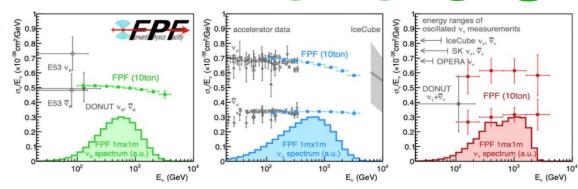
FASER2




FPF Physics Potential

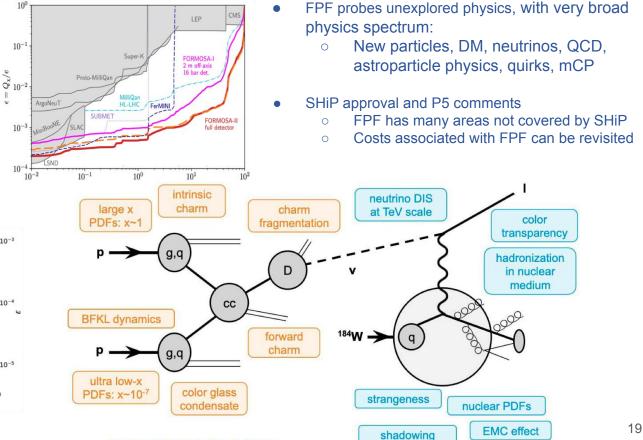
Hidden Sector


Benchmark Model	FASER	FASER 2
Dark Photons		\checkmark
B - L Gauge Bosons	V	V
$L_i - L_j$ Gauge Bosons		
Dark Higgs Bosons		\checkmark
Dark Higgs Bosons with hSS	—	\checkmark
HNLs with e		V
HNLs with μ	_	\checkmark
HNLs with τ	\checkmark	
ALPs with Photon	~	~
ALPs with Fermion	<u> </u>	V
ALPs with Gluon	\checkmark	\checkmark
Dark Pseudoscalars	_	V

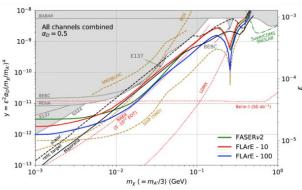

• Millicharged particles

• Light DM scattering

Differential neutrino flux measurements for all flavours at TeV energies


FPF Physics Potential (2)

Hidden Sector


Benchmark Model	FASER	FASER 2
Dark Photons		~
B - L Gauge Bosons	V	V
$L_i - L_j$ Gauge Bosons		
Dark Higgs Bosons		~
Dark Higgs Bosons with hSS	—	V
HNLs with e		V
HNLs with μ	—	V
HNLs with τ	\checkmark	V
ALPs with Photon	~	~
ALPs with Fermion	_	V
ALPs with Gluon	\checkmark	V
Dark Pseudoscalars	_	V

Millicharged particles

÷

Light DM scattering

Forward Particle Production

Summary and Outlook

FASER has probed new parameter space with the ALP-W model

- At mass and coupling previously unexplored by existing experiments
- A conference note on these new results has been published!
- Will present results at LHCP in Boston next month
- Analysis efforts led by Liverpool

More searches and neutrino measurements to come

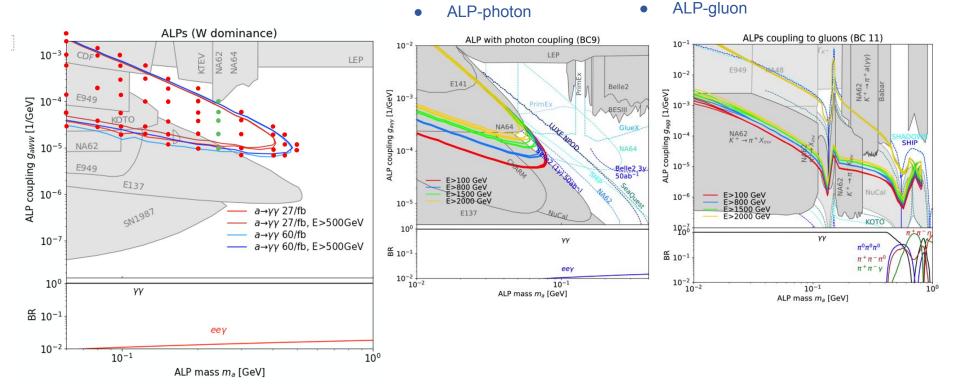
- ALP event selection will be used to probe additional models
- Electronic neutrino analysis update in progress

Proposal for dedicated HL-LHC forward physics facility

Major involvement from Liverpool

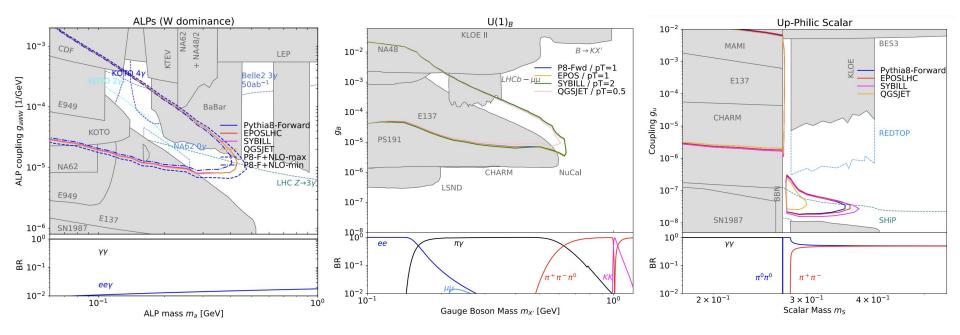
Preliminary $L = 57.7 \text{ fb}^{-1}$ Expected Limit (±1 σ..... 90% CL) ALP Coupling g_{aww} [0 → served Limit (90% CL BaBar Limit SN1987 Limi E137 Limit LEP Limit 949 Limi **KOTO** Limit TEV Limi JA62 + NA48/2 Limit CDE Limit 10⁻⁵ NA62 Limit Lottie Cavanagh 10-6 10² m_a [MeV]

Next steps for LivFASER team:


- Incoming PhD student Pawan joining in October 2024 (joint with RAL)
- Sinead to begin LTA at CERN in October 2024
- Lottie currently writing up, accepted post doc position at ETH Zurich (FASER + HyperK)

Thank you for listening!

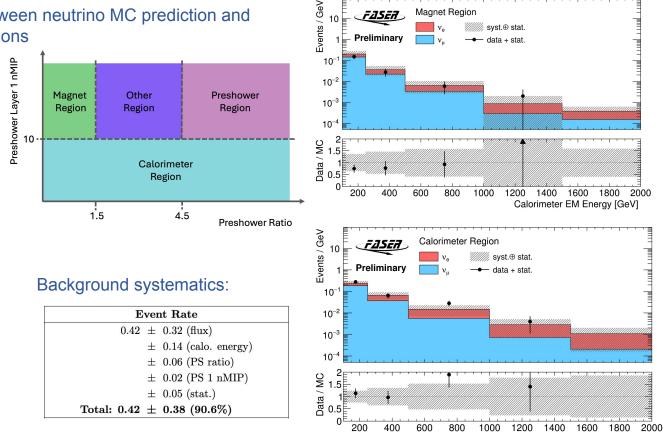
Backup Slides


Models Considered in this Analysis: ALPs

• ALP-W signal grid

Lottie Cavanagh - FASER General Meeting - 16th February 2023

ALP-W + multiphoton models


Neutrino Background Estimation

Good agreement between neutrino MC prediction and data in validation regions

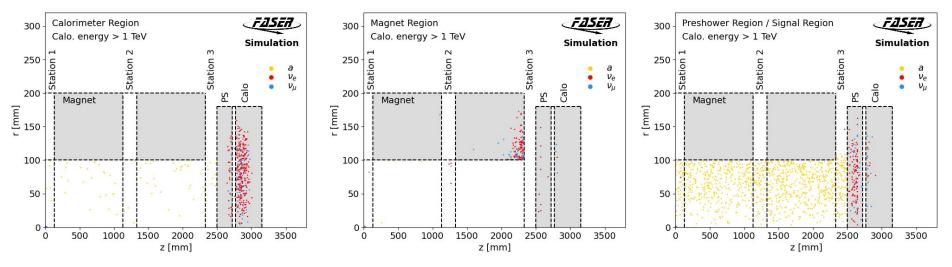
Calorimeter Region		
MC	62.7 ± 19.7 (31.4%)	
Data	74	

Magnet Region		
МС	43.5 ± 18.2 (41.9%)	
Data	34	

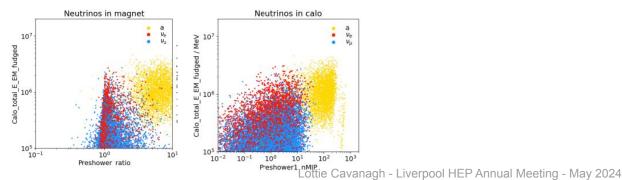
Preshower Region		
MC	17.8 ± 5.1 (28.8%)	
Data	15	

Magnet Region

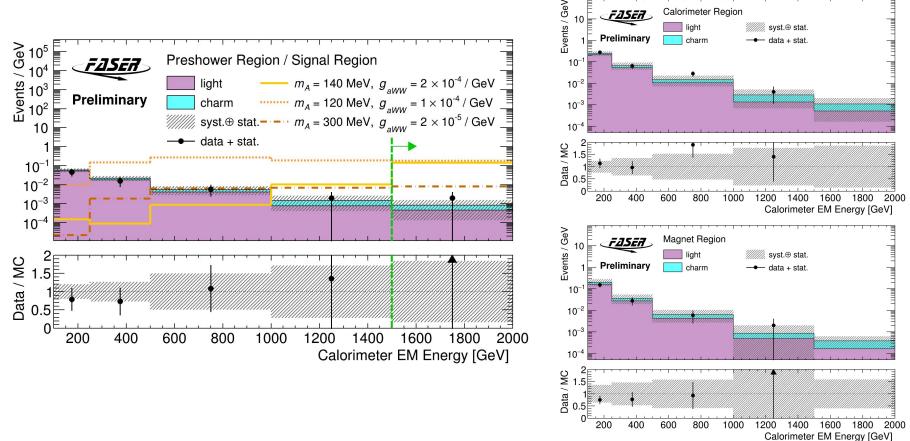
FASERS


10

Lottie Cavanagh - Liverpool HEP Annual Meeting - May 2024


Calorimeter EM Energy [GeV]

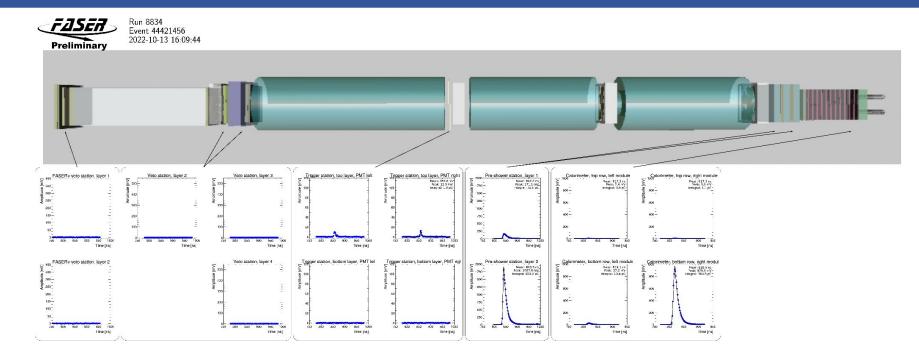
2000


Calorimeter, Magnet, Preshower Regions: 1 TeV cut

Preshower variables:

ALP Results: Alternative Neutrino MC plot

Calorimeter Region

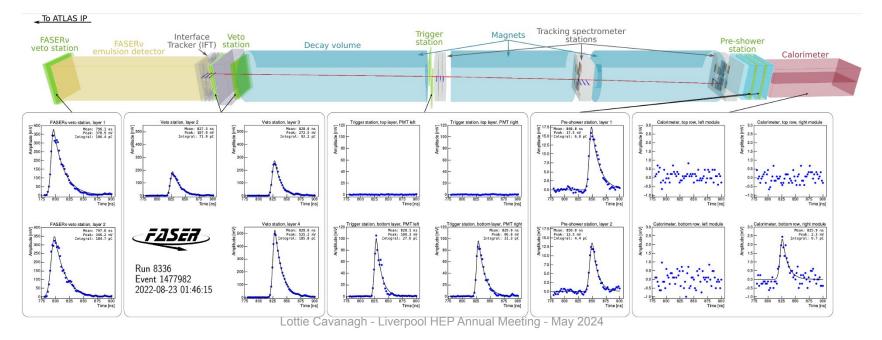

• In terms of light and charm:

Magnet	region	
Light	$33.6^{+6.7}_{-3.4}$ (flux) ± 4.3 (exp.) ± 0.4 (stat.)	
Charm	$9.9^{+16.1}_{-4.6}$ (flux) ± 0.9 (exp.) ± 0.2 (stat.)	
Total	$\textbf{43.5} \pm \textbf{18.2} \; \textbf{(41.9\%)}$	
Data	34	
"Other" region		
Light	$17.4^{+1.3}_{-0.8}$ (flux) ± 2.5 (exp.) ± 0.3 (stat.)	
Charm	$3.9^{+6.0}_{-1.8}$ (flux) ± 0.5 (exp.) ± 0.2 (stat.)	
Total	$21.3 \pm 6.9 (\mathbf{32.2\%})$	
Data	17	
Calorin	neter region	
Light	$51.6^{+2.0}_{-3.4}$ (flux) ± 3.1 (exp.) ± 0.5 (stat.)	
Charm	$11.1^{+19.1}_{-5.1}$ (flux) ± 0.4 (exp.) ± 0.3 (stat.)	
Total	$62.7\pm19.7(31.4\%)$	
Data	74	
Preshow	ver region	
Light	$14.8^{+0.9}_{-1.2}$ (flux) ± 1.8 (exp.) ± 0.3 (stat.)	
Charm	$3.0^{+4.5}_{-1.4}$ (flux) ± 0.3 (exp.) ± 0.1 (stat.)	
Total	$17.8 \pm 5.1 \; (28.8\%)$	
Data	15	

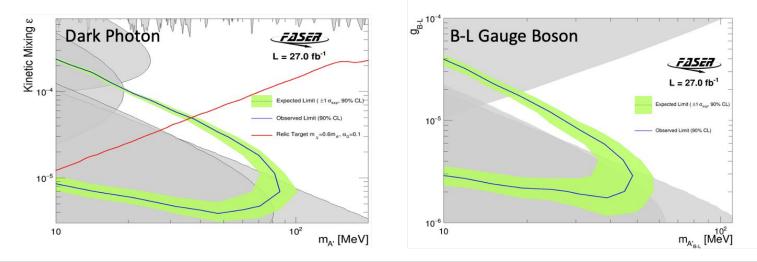
• In terms of neutrino type:

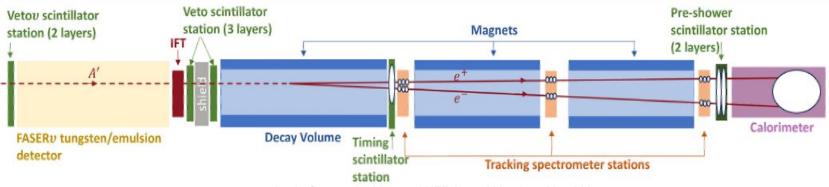
\mathbf{SR}	
ν_e	0.32 ± 0.31 (flux) ± 0.10 (exp.) ± 0.04 (stat.)
ν_{μ}	0.09 ± 0.04 (flux) ± 0.05 (exp.) ± 0.02 (stat.)
Total	$0.42\pm0.38(90.6\%)$
Data	1
Presh	ower region
ν_e	5.16 ± 2.59 (flux) ± 0.51 (exp.) ± 0.17 (stat.)
ν_{μ}	$12.6 \pm 2.3 \text{ (flux)} \pm 1.61 \text{ (exp.)} \pm 0.3 \text{ (stat.)}$
Total	$17.8\pm5.1(28.8\%)$
Data	15
Calori	meter region
ν_e	$22.6 \pm 12.8 \text{ (flux)} \pm 0.7 \text{ (exp.)} \pm 0.4 \text{ (stat.)}$
ν_{μ}	$39.9 \pm 6.8 \text{ (flux)} \pm 2.8 \text{ (exp.)} \pm 0.5 \text{ (stat.)}$
Total	$62.7 \pm 19.7 (\mathbf{31.4\%})$
Data	74
Magne	et region
ν_e	$13.8 \pm 10.3 \text{ (flux)} \pm 1.4 \text{ (exp.)} \pm 0.3 \text{ (stat.)}$
ν_{μ}	$29.4 \pm 8.0 \text{ (flux)} \pm 3.8 \text{ (exp.)} \pm 0.4 \text{ (stat.)}$
Total	$43.5\pm18.2(\mathbf{41.9\%})$
Data	34
"Othe	r" region
ν_e	$6.3 \pm 3.6 \text{ (flux)} \pm 0.8 \text{ (exp.)} \pm 0.19 \text{ (stat.)}$
ν_{μ}	14.9 \pm 2.7 (flux) \pm 2.2 (exp.) \pm 0.3 (stat.)
Total	$21.3 \pm 6.9 (\mathbf{32.2\%})$
Data	17

Event Display



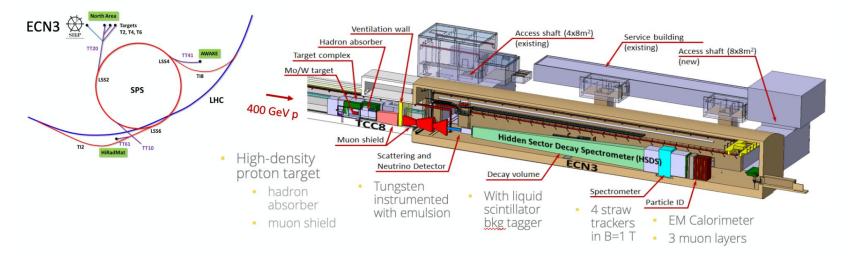
- This event has a calorimeter energy of **1.6 TeV**
- Shows preshower deposits consistent with an EM shower


Veto scintillator layer efficiency > 99.998%


5 layers reduces the expected 10⁸ muons to negligible level (even before cuts)

Single muon event in FASER:

Dark Photons and B-L Gauge Boson Limits



Lottie Cavanagh - Liverpool HEP Annual Meeting - May 2024

SHiP Experiment

- New dedicated beam-dump experiment recently approved for ENC3 cavern at CERN's SPS NA
 - Aiming for TDR in 2026, followed by PRR and installation in 2028/9
 - Start data-taking in latter half of run 4, aiming to collect 6 x 10²⁰ POT over 15 years

• Currently 4 UK institutes: Bristol, Imperial (spokesperson), UCL, Warwick

• But several more interested in joining now formally approved

14

Letter of Intent