UKRI-MPW1: Design and Preliminary characterisation Of An HV-CMOS Sensor For High Radiation Tolerance

Benjamin Wade

Supervisors: E. Vilella-Figueras

J. Vossebeld

Christmas Meeting 3rd Year

Recap

Recap

Recap

UKRI Work Over The Last Couple Years

UKRI-MPW0

- Characterisation of depletion region (eTCT)
- Effects of Non Ionising Energy Loss (NIEL) radiation on depletion region
- Conference proceedings published

Ultimate goal:

- Improve radiation tolerance of HV-CMOS sensors
- Replace Hybrid-pixels
- TAKE OVER THE WORLD

- TCAD simulation
- Interpixel channel reduction
- Breakdown simulations

UKRI Work Over The Last Couple Years

UKRI-MPW0

- Characterisation of depletion region (eTCT)
- Effects of Non Ionising Energy Loss (NIEL) radiation on depletion region
- Conference proceedings published

Ultimate goal:

- Improve radiation tolerance of HV-CMOS sensors
- Replace Hybrid-pixels
- TAKE OVER THE WORLD

- TCAD simulation
- Interpixel channel reduction
- Breakdown simulations
- Conference Proceedings (Pending)
- Breakdown measurements

- Breakdown ~ 600 V
- 50 μm Depletion at 400 V, after 1x10^{16} 1 MeV $n_{eq}\,cm^{-2}$
- ~ 1 mA substrate leakage (pixel leakage okay)
- High Current at low bias

UKRI-MPW1 Chip Additions

- Change ring scheme to Voltage Terminating Scheme (VTS)
 - Gradually step down potential to chip edge
 - Reduce leakage current
- Implement new p-shield layer
 - Single p-type profile
 - Targetted
 - Better isolate pixels
 - Run chip at lower voltages
 - Little effect on breakdown
 - 3 p-shield concentrations + no layer (Low, Mid, High + no layer)

Received Earlier this year

p-sub

p-well

p-shield

dn-well

n-iso

n-well

STI

UKRI-MPW1 Preliminary

I-V Measurements

- Preliminary Current Voltage (IV) measurements
- Test structure I (3 x 3 passive pixels)
- 3 p-shield recipes + No p-shield
- Test structure pixels, n-fill, Clean-Up ring to 0 V
- Central pixel measured
- Outer 8 measured together
- Seal ring (Outer p-well) floating
- Backside to HV
- Several Chips per p-shield concentration

UKRI-MPW1 Preliminary Chip Breakdown

- Substantial reduction in chip leakage
- Slight variation in breakdown (within sample and wafer variation)

PWELL

NWELL

PSUB

DNWELL

p-substrate

pixels and other structures

- Strange shape in substrate curve

NW

NWELL

NISO

DNWELL

CTR

chip edge

NW

NISO

DNW

CR

PWELL

UKRI-MPW1 Preliminary Pixel Isolation

Benjamin Wade Christmas 2023

UKRI-MPW1 eTCT Pixels Measurements To Be Taken

- Connect test structure through oscilloscope
- Focus IR laser on central pixel
- Map charge generated with position in diode
- See how depletion grows with bias voltage
- Find resistivity of chip
- See how depletion interacts with p-shield

UKRI-MPW1 eTCT Pixels Measurements To Be Taken

- Connect ring structure through oscilloscope
- Focus IR laser on central pixel
- Map charge generated with position in ring scheme
- See how depletion grows with bias voltage
- Find locations of damage on the chip?
- Help develop better ring scheme?

z

UKRI-MPW1 Outlook

- New ring scheme working (mostly)
- P-shield Reduces interpixel current
- Less noise between samples
- Minimal reduction in breakdown
- Shape to be understood
- eTCT of p-shield/pixel effects
- eTCT of ring structure
- Samples irradiated (1x10¹⁴ to 1x10¹⁷ 1 MeV n_{eq} cm⁻²)
- Start next iteration
- Write

Chip Edge

3.0 k Ω cm p-substrate

[∆]-н∨

Trackers

Backup Slides

The ATLAS Inner Tracker G. Mullier: The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

- Collision event generates charged particles
- Charged particles curve in magnetic field
- Tracker follows the path
- Curvature determines charge, mass of particle

Placed close to collision center

High rate of events MHz-GHz rate of bunch crossings

Minimal track disruption

Higher collision energies

- Sensors receive high radiation dose
- Fine spatial resolution required Good time resolution
- Thin sensors

More radiation, finer detail needed

Sensors need to be thin, fast, radiation tolerant, and within budget

DISCLAIMER: I do not work for ATLAS, this is just an example

Run Number: 265545, Event Number: 572035

Date: 2015-05-21 10:39:54 CEST

Pixel Sensors

Backup Slides

External Readout Circuitry:

Fast readout 🗙 Specialised bump-bonding Increases thickness Limits granularity

Integrated Readout Circuitry:

- Thin sensors
- Industrial standard
- Cost effective

HV-CMOS

Cross-section of a typical HV-CMOS pixel

Integrated Readout Circuitry:

- Thin sensors
- Industrial standard
- Cost effective

High Voltage Pixel:

- ✓ More radiation tolerant
- Fast charge collection (Drift)

Low Voltage Pixel:

X Less radiation tolerant X Slow charge collection (Diffusion)

High Voltage Pixel:

- More radiation tolerant
- Fast charge collection (Drift)

Future	e Requir	rements	Backup	Slides					
Industrial Standard No spe Manufacturing Process process		No specialis processes	ed (expensive)	Cross-section of a typical HV-CMOS pixel	V PW	V _{SN} P NW NISO	P n PWELL PSUB PSUB DNWELL DNWELL DNWELL DNWELL DNWELL/p-su	NWELL	PW
High Voltage	_	Radiation to Fast time res	Radiation tolerant, Fast time resolution			strate	junction	, 수 LFor	undry 150 nm
Monolithic		- Thin							
	Pixel Size (µm²)	System Time Resolution (ns)	Radiation Toleran (NIEL) (1 MeV n _{eq} cm ⁻² Ye	ce ear ⁻¹)					
HL-LHC	50 x 50	0.03	10 ¹⁶			Geneva	Future		
FCC-hh	25 x 50	0.1	10 ¹⁶ to 10 ¹⁷			PS CDC	Circular Collider		
Current HV-CMOS	50 x 50	3.16	10 ¹⁵			27 km	100 km	The second secon	Comission In the Artistic Statements The Control of Con
							https://cds.com.ch/ror	ord/2653532/files/EC	C%20v2 in

Future tracking detector specifications, and current HV-CMOS capabilities

https://cds.cern.ch/record/2653532/files/FCC%20v2.jp g?subformat=icon-1440

Liverpool HV-CMOS ProjectBackup Slides

- Increase breakdown voltage
- Increase radiation tolerance
- Backside bias
- Reduce topside p-wells
- ~ 1000 V chip breakdown in simulation

UKRI-MPW0 Design

- LFoundry 150 nm, HV-CMOS
- 1.9 kΩ cm Substrate Resistivity
- 5.0 mm x 3.5 mm
- Thinned to 280 µm thickness before backside⁴ processing
- Current Terminating Ring structure (CTR)
- Fully backside biased only
 - Backside processing provided by Ion Beam Service (IBS)
 - 2 Processing methods offered
- 2 Active matrices
- 3 Sets of passive test structures

Backup Slides

UKRI-MPW1 TCAD

10-06

10-08

10-1

10-12

n+

Current (A)

- Change ring scheme to Voltage Terminating Scheme (VTS)
 - Gradually step down potential to chip edge
 - Reduce leakage current
- Implement new p-shield layer
 - Single p-type profile
 - Low dose
 - Increasing conc' closes channel faster
 - Targetted
 - Better isolate pixels
 - Run chip at lower voltages
 - Little effect on breakdown

[∆]-HV

📕 p+

p-sub

p-well

p-shield

UKRI-MPW1 Chip

- LFoundry 150 nm, HV-CMOS
- 3.0 kΩ cm Substrate Resistivity
- 3.8 mm x 2.7 mm
- Thinned to 280 µm thickness before backside processing
- Voltage Terminating Ring structure (VTR)
- Additional "n-fill" structures for improved performance
- Backside Biased
 - Backside processing provided by Ion Beam Service (IBS)

[∆]-HV

- 3 P-shield concentrations + no layer
 - High, Mid, Low + no layer
- 1 Active matrices

Chip Edge

3.0 kΩ cm p-substrate

- 1 Sets of 4 passive test structures

Backup Slides

p

p-sub

p-well

p-shield

p-substrate

🗖 n†

STI

Pixel Matrix -

dn-well

n-iso

n-well

Sensing Region

- Sensing diode increases depletion region with negative biases until diode breaks down
- NIEL reduces depletion region ability to grow
- Counteracted by increasing bias voltage
 - more room for growth
 - Increases charge collection speed
 - Charge traps less effective

$$W = W_0 + \sqrt{\frac{2\epsilon_r\epsilon_0}{qN_A}V_{bias}}$$

- W = Depletion depth of semiconductor
- W_0 = Depletion depth at 0 V
- $\epsilon_r = \text{Relative permittivity of silicon}$
- ϵ_0 = Permittivity of free space
 - = Charge of an electron
- N_A = Doping concentration of acceptor atoms
- V_{bias} = Reverse bias voltage

Backup Slides

q

Bulk Damage: Non Ionising Energy Loss (NIEL)

F. H onniger, "Radiation damage in silicon. defect analysis and detector properties", 2008.

- Incident radiation knocks an atom out of the lattice, Primary Knock-on Atom (PKA)
- Atom travels knocking more atoms out of the lattice, interstitial-vacancy pairs (Frenkel Pairs)
- Damage introduces acceptor removal, energy levels in the band structure, and charge traps
- Changes doping profile and resistivity

Backup Slides