Sterile Neutrino Oscillation Searches using VALOR at SBND

Beth Slater

Liverpool HEP Annual Christmas Meeting 2024

Sterile Neutrinos

- Experimental anomalies may hint at a fourth neutrino
 - Gallium: deficit of ν_{ρ} flux from Ar-37 and Cr-51 electron capture decays.
 - Accelerator (LSND and MiniBooNE): excess of (anti-) ν_e flux from $\nu_\mu \rightarrow \nu_e$
- Limit of 3 active flavours from the Z-boson resonance width and cosmological data
 - 4th active flavour ruled out at a 98% confidence level by ALEPH in 1989 [1]
 - Cosmological limits give $N_{eff} = 3.32 \pm 0.27 (68\% CL)^{[2]}$
- Tensions between anomalous results and disappearance analyses [3]
- 3 active + 1 sterile is benchmark hypothesis
- Test existence via mixing with active flavours

Short Baseline Near Detector

- First of 3 LAr TPC detectors along the BNB
 - Short Baseline Neutrino (SBN) program
- Physics aims:
 - Search for sterile neutrino oscillations
 - Studying neutrino-argon interactions
 - Searching for new (neutrino) physics [4]
- SBND will measure about 2 million neutrino-argon interactions each year
 - Largest ever v-Ar dataset
- SBND has recently completed the filling with LAr stage and is currently in the commissioning/calibrations stage.

Role of SBND in the SBN Programme

- SBN will definitively test the parameter space favoured by previous measurements
- Our predictions have a-priori uncertainties ~30%
 - Too large to search for new physics
 - Need to reduce to ~1%
- The role of SBND is to reduce uncertainty to enable new physics searches
 - The detector will fully characterise the neutrino flux and neutrino-Argon cross-section
- Will need powerful analysis framework to fully exploit the power of SBND samples

VALOR

- Well established and tested neutrino fitting framework [6]
- Developed within T2K and used for many published results [7]
- Can perform single and multi-oscillation channel analyses
- VALOR can fit multiple different inclusive or exclusive samples for all detectors
 - Complementary information from different samples helps solve the degeneracies between systematic effects and/or new physics
- VALOR simultaneously fits for oscillation and systematic parameters
 - Provides explicit constraints on systematics

VALOR: Global Analysis Strategy

Simulation **Simulation Simulation** • External ν/e/h Calibration data Beam monitors interaction data • Test beam data **Optional prior** • п and к data constraints Null model Oscillation Cross-section **Detector** Flux Model model model model (3+1,3+2...)**SBND ICARUS Predictions** Selection 1, 2, 3... Selection 1, 2, 3... Likelihood Calculation **ICARUS SBND Observations Joint oscillation** Selection 1, 2, 3... **Selection 1, 2, 3...** & systematics constraint fit

Joint fits as systematics will impact each sample in a different way, increasing sensitivity to variations of those parameters

- Joint fits matching prediction to data
- Simulation data informs models
- Models used to generate predictions
- Obtain explicit systematic constraints

VALOR: Analysis Strategy

This presentation will focus on fits using only SBND assuming no oscillations

No far detectors are used, unless clearly stated

VALOR: Event Rate Prediction

VALOR: Systematic Parameters

Uncorrelated Parameters:

- We construct Response Functions (splines) to encapsulate the impact of nσ variations on every 2D template bin, interaction mode, and beam•detector•sample configuration
- Allows for mode-dependant variations and unique granularity
- Systematic parameters are currently eliminated via profiling
 - Option to use marginalisation

Correlated Parameters:

- We construct Covariance Matrices
- There is development to build multidimensional response functions

Preliminary Sensitivities

- VALOR has been used within SBN for several years
 - Implemented several oscillation sensitivity analyses
 - o Below are the standard sensitivities for the 3 standalone channels
 - Using inclusive samples and pseudo-reconstruction

Strengths of using VALOR

- VALOR oscillation fits obtains explicit post fit parameter pulls for every systematic parameter on every interaction mode
- We can therefore analyse fitting failure modes in great detail and use it to inform targeted modifications to the analysis procedure
 - Improve interaction systematic constraints→ Fit combinations of exclusive and semi-exclusive topologies
 - Improve flux systematic constraints → Fit combinations of off-axis bins (PRISM)

SBND-PRISM

- Takes measurements at different off-axis locations
 - Different energy spectra/composition
- Joint fit of all off-axis samples
 - Improved systematic constraints/degeneracy resolution
 - Enhanced oscillation sensitivity
- SBND split into 8 angular bins for illustration
 - The statistics in each bin are still large so the systematics dominate

Beth Slater | SBND Sterile Neutrino Oscillation Searches using VALOR

Improvements with PRISM

- PRISM3 defined as SBND split into 3 angular bins
 - o Split so each has approximately even statistics
- SBND defined as standard whole detector approach
 - o Integrated across all off axis angles
- Subset of the full systematic parameter list chosen
 - See <u>backup</u>
- Aim to test:
 - Whether analysis is capable of correctly determining applied tweaks by assigning:
 - Appropriate parameter pulls
 - Sensible corresponding uncertainties
 - Whether the PRISM3 inclusive fits perform better than the standard SBND inclusive fits

Testing Analysis Improvements Procedure

Postfit Parameter Pulls Comparison

- Example postfit parameter pulls from a single set of tweaks
- Parameter pulled to "True Value"
- Test whether the postfit SBND/PRISM3 errors encompass the true value

- The number of SBND and PRISM3 fits which correctly found the true parameter pull, within the assigned postfit uncertainty.
 - Ordered from most to least according to the SBND fits.
 - o 5,000 fits for each setup
- In all parameters, the number of correct pulls is greater for the PRISM3 setup than SBND
- SBND: 81% of pulls correct
- PRISM3: 88% of pulls correct

Parameter	SBND	PRISM3
$\mathbf{f}_{SkinEffect}$	4742	4915
$\mathrm{f}_{M_A^{CCRes}}$	4564	4817
$\mathrm{f}_{R_N^{Inel}}$	4535	4941
$\mathrm{f}_{nR_{ u n}^{CC^{1\pi}}}$	4260	4792
$\mathrm{f}_{R_\pi^{Abs}}$	4225	4673
${ m f}_{M_V^{NCRes}}$	3928	4286
$\mathrm{f}_{M_A^{CCQE}}$	3885	4048
$\mathrm{F}_{\sigma^N_{QE}}$	3637	4252
$f_{nR_{\nu p}*NC2\pi}$	3502	3775
$\mathrm{f}_{B_{HT}}$	3247	3384
Total	40525	43883

Resolution

- $Pull_{Bestfit}$ $Pull_{True}$ in units of the prefit uncertainty, σ_{Prefit}
 - Value of 0 indicates correct pull
 - Does not account for postfit uncertainty on the pull
- Resolution improves when moving from SBND to PRISM3 fits
 - Improvement in Std Dev quantifies this $(0.5\rightarrow0.4)$
- There is the same effect when looking at each parameter individually

Summary

- SBN programme should improve understanding of sterile hypothesis
- SBND will have excellent statistics as the event rate is high
 - Used to constrain systematic uncertainties
- The use of SBND-PRISM was demonstrated to consistently improve systematic constraints for a variety of dominant parameters
 - PRISM has been implemented in VALOR for all 3 oscillation channels
 - Ongoing work to validate this and to find optimal number of off-axis bins and understand improvements to sensitivities
- Many other lines of work within VALOR to incorporate exclusive samples and evaluate uncertainties and biases within mock data

rches using VALOR

Beth

References

- 1. ALEPH, D. Decamp et al., Determination of the Number of Light Neutrino Species, Phys. Lett. B 231, 519 (1989)
- 2. On the behalf of the Planck Collaboration. Cosmological constraints on neutrinos with Planck data. In Boston, Massachusetts, USA; 2015 [cited 2023 Jun 22]. p. 140001. Available from: https://pubs.aip.org/aip/acp/article/907472
- 3. Dasgupta B, Kopp J. Sterile Neutrinos. Physics Reports. 2021 Sep;928:1–63.
- 4. Machado PAN, Palamara O, Schmitz DW. The Short-Baseline Neutrino Program at Fermilab. Annu Rev Nucl Part Sci. 2019 Oct 19;69(1):363–87.
- 5. Jones R. Status of the Short Baseline Near Detector at Fermilab. ICHEP 2022.
- 6. VALOR Neutrino Fit [Internet]. hep.ph.liv.ac.uk. [cited 2023 Jun 22]. Available from: https://hep.ph.liv.ac.uk/~costasa/valor/
- 7. Andreopoulos C. VALOR Neutrino Fit [Internet]. hep.ph.liv.ac.uk. [cited 2024 Mar 26]. Available from: https://hep.ph.liv.ac.uk/~costasa/valor/#results_t2k
- 8. Del Tutto M, Machado P, Kelly K, Harnik R. SBND-PRISM: Sampling Multiple Off-Axis Fluxes with the Same Detector. In: SBND-PRISM: Sampling Multiple Off-Axis Fluxes with the Same Detector [Internet]. US DOE; 2021 [cited 2023 Jun 22]. Available from: https://www.osti.gov/servlets/purl/1827399/

Backup

Likelihood Calculation

Contribution to the likelihood ratio from SBN simulation and data

$$\chi_0^2 = -2 \ln \mathcal{L}_0(\vec{\theta}; \vec{f}) = 2 \sum_{b,d,s,r} \left(n_{b;d;s}^{data}(r) \cdot \ln \frac{n_{b;d;s}^{data}(r)}{n_{b;d;s}^{pred}(r; \vec{\theta}; \vec{f})} + (n_{b;d;s}^{pred}(r; \vec{\theta}; \vec{f}) - n_{b;d;s}^{data}(r)) \right)$$

$$\chi^2 = -2\ln \mathcal{L}(\vec{\theta}; \vec{f}) = -2\ln \mathcal{L}_0(\vec{\theta}; \vec{f}) - 2\ln \mathcal{L}_{phys}(\vec{\theta}) - 2\ln \mathcal{L}_{syst}(\vec{f})$$

Penalty term due to prior physics constraints

$$\chi_{phys}^2 = -2\ln \mathcal{L}_{phys}(\vec{\theta}) = 0$$

Penalty term due to prior systematic constraints
$$\chi^2_{syst} = -2 \ln \mathcal{L}_{syst}(\vec{f}) = (\vec{f} - \vec{f_0})^T \cdot \mathbf{V^{-1}} \cdot (\vec{f} - \vec{f_0})$$

SBND-PRISM: Flux

- Muon neutrino flux decreases moving off axis
- Electron neutrino flux remains almost constant

[8]

Subset of Systematic Parameters for Pull Studies

 Subset of systematic parameters chosen for pull study to quantify improvement by using the PRISM technique within SBND.

- o 8 interaction parameters
- 2 flux parameters

Parameter	Description				
Interaction Parameters					
$f_{M_A^{CCQE}}$	Axial mass for CC quasi-elastic				
$f_{M_A^{CCRes}}$	Axial mass for CC resonance neutrino production				
$f_{nR_{ u n}^{CC1\pi}}$	Non-resonance bkg normalisation in νn CC 1π reactions				
$f_{nR_{\nu p}*NC2\pi}$	Non-resonance bkg normalisation in νp NC 2π reactions				
$f_{M_V^{NCRes}}$	Vector mass for NC resonance neutrino production				
$f_{B_{HT}}$	Higher twist parameter B for NC and CC DIS events				
$f_{R_{\pi}^{Abs}}$	Intranuclear absorption fraction for pions				
$f_{R_N^{Inel}}$	Intranuclear inelastic re-scattering fraction for nucleons				
	Flux Parameters				
$f_{\sigma^N_{QE}}$	Secondary nucleon interactions in the target (Be) and				
	horn (Al), quasi-elastic cross section				
$f_{SkinEffect}$	Depth that the current penetrates the horn current				

back

Summary of Results

- How many parameters had their pull assigned correctly X% out of the 5,000 fits
 - Out of the 10 systematic parameters
 - Within postfit uncertainty
- What proportion of all parameters pulls did each analysis assign correctly
 - Out of 50,000 total pulls
 - Within postfit uncertainty

SBND Simulation | Work in Progress

Correct Pulls	< 80%	80-90%	> 90%	Overall Pulls Correct
	of Fits	of Fits	of Fits	
SBND	5	2	3	81%
PRISM 3	2	3	5	88%

