

Development of the agnostic global PID for ND280 near detector

Patrick Bates
sgpbates@liverpool.ac.uk
24/05/2024

T2K Experiment

- T2K is a long baseline neutrino experiment stationed in Japan, with the beam stretching 295km
- The beam originates at J-PARC, passing through the near detector suites, located 280m downstream, before reaching Super-K

.

Diagram of the T2K experiment

- The experiment investigates neutrino oscillations, measurement of oscillation parameters, and measurement of neutrino interaction cross section
- The ND280 near detector is an off axis detector that constrains and measures the neutrino flux to simulate what we see at Super-K, with the Fine grained detector (FGD) serving as the target mass
 - The upgrade introduces three new sub-detectors:
 - Super-FGD: a larger target mass, capable of reconstructing short tracks near the interaction vertex and neutrons
 - High angle TPC: provides larger angular acceptance
 - Time of flight planes: reconstruction of direction

PID selection – set up

- My PID selection utilizes a Boosted Decision Tree (BDT) built using the xgboost package
- Originally I was using the TMVA package, but I moved over to xgboost as it is a more modern multivariate analysis tool
- All my tests used training and testing samples with the old configuration, originate in FGD1 and are all positive tracks

All input variables used in my PID selection: blue are muons, orange are pions, green are positron and red is proton

PID selection - implementation

- The standard method of PID is to carry out PID at each individual sub-detector
- The BDT can carry out PID using information from multiple subdetectors, which takes advantage of and utilizes as much information as possible
- Tests were run to see what effects removing certain input variables, such dE/dx from TPC3, would have on overtraining
 - The lack of TPC3 dE/dx did not affect overtraining

Implementation of the BDT – Testing PID with no TPC3 dE/dx input

Purity against efficiency – all input variables

Purity against efficiency – no TPC3 dE/dx input

Implementation of the BDT – Testing PID with no TPC3 dE/dx input

Difference between the training and testing sample purity against efficiency – all input variables

Difference between the training and testing sample purity against efficiency – no TPC3 dE/dx input

6

Implementation of the BDT – Positron and proton likelihood plots

Proton likelihood 100 Anti-muon events Pion plus events Positron events 10^{-1} Proton events Entries (log scale) 10^{-2} 10^{-3} 10^{-4} 10-5 0.2 0.8 0.0 0.4 0.6 1.0 BDT PID output

Proton likelihood plot

Positron likelihood plot

Implementation of the BDT – Muon and pion likelihood plots

Pion likelihood plot

Muon likelihood plot

Measurement of neutrino flux and neutrino interaction cross section

- The likelihood plots show good separation of antimuons from other particle types
 - Likelihood broader for muons and pions due to the two being indistinguishable if the pion does not shower
- Separation of muon events from other particle events gives us accurate measurement of the neutrino flux
- Accurate measurements of neutrino interaction cross sections improve neutrino-nucleus interaction model

Electromagnetic shower seen in the barrel Ecal produced by a positive pion event

MIP like track passing through the barrel Ecal produced by an anti-muon event

MIP like track passing through the barrel Ecal produced by a positive pion event

LTA – bar to bar calibration and TripT detector

- expert
- Carrying out bar to bar calibration for the ND280 near detector
 - Helping with the change over to singularity containers
- I am a TripT detector expert:
 - Responsible for the weekly calibration of the SMRD, Ecal and us-ECal
 - Monitoring the cooling lines for the ND280 sub-detectors
 - Dealing with any issues related to calibration and cooling
- Beam starts in a few days and I will be assisting in the start up and carrying out TripT expert work
- Been in Japan for 6 months back in the UK on the 16th of July

One set of plots, MPPC gains for Ecal, that show the performance of the TripT detectors

Next stage for my analysis

- Developing training and testing samples for the new ND280 configuration that originate in the SFGD
- The new samples allow for analysis for the new configuration, introducing new input variables that can be utilized by my PID
 - PID variables from SFGD, HA-TPC and the TOF
- Implement my analysis into CC1pi cross section measurement and analysis